Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2017.02.069
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Vasileva, Evgeniia & Viljainen, Satu & Sulamaa, Pekka & Kuleshov, Dmitry, 2015. "RES support in Russia: Impact on capacity and electricity market prices," Renewable Energy, Elsevier, vol. 76(C), pages 82-90.
- Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
- Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
- Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
- Tveten, Åsa Grytli & Bolkesjø, Torjus Folsland & Martinsen, Thomas & Hvarnes, Håvard, 2013. "Solar feed-in tariffs and the merit order effect: A study of the German electricity market," Energy Policy, Elsevier, vol. 61(C), pages 761-770.
- Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
- Saarinen, Linn & Dahlbäck, Niklas & Lundin, Urban, 2015. "Power system flexibility need induced by wind and solar power intermittency on time scales of 1–14 days," Renewable Energy, Elsevier, vol. 83(C), pages 339-344.
- Li, Cun-Bin & Chen, Hong-Yi & Zhu, Jiang & Zuo, Jian & Zillante, George & Zhao, Zhen-Yu, 2015. "Comprehensive assessment of flexibility of the wind power industry chain," Renewable Energy, Elsevier, vol. 74(C), pages 18-26.
- Solomon, A.A. & Faiman, D. & Meron, G., 2010. "The effects on grid matching and ramping requirements, of single and distributed PV systems employing various fixed and sun-tracking technologies," Energy Policy, Elsevier, vol. 38(10), pages 5469-5481, October.
- Li, Xuping & Paster, Mark & Stubbins, James, 2015. "The dynamics of electricity grid operation with increasing renewables and the path toward maximum renewable deployment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 1007-1015.
- Lamadrid, Alberto J. & Mount, Tim, 2012. "Ancillary services in systems with high penetrations of renewable energy sources, the case of ramping," Energy Economics, Elsevier, vol. 34(6), pages 1959-1971.
- Brouwer, Anne Sjoerd & van den Broek, Machteld & Seebregts, Ad & Faaij, André, 2015. "Operational flexibility and economics of power plants in future low-carbon power systems," Applied Energy, Elsevier, vol. 156(C), pages 107-128.
- Kirby, Brendan & Milligan, Michael, 2008. "An Examination of Capacity and Ramping Impacts of Wind Energy on Power Systems," The Electricity Journal, Elsevier, vol. 21(7), pages 30-42.
- Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar & Sullivan, Patrick & Schmid, Eva & Bauer, Nico & Böttger, Diana & Pietzcker, Robert, 2015. "Representing power sector variability and the integration of variable renewables in long-term energy-economy models using residual load duration curves," Energy, Elsevier, vol. 90(P2), pages 1799-1814.
- Kubik, M.L. & Coker, P.J. & Barlow, J.F., 2015. "Increasing thermal plant flexibility in a high renewables power system," Applied Energy, Elsevier, vol. 154(C), pages 102-111.
- Barelli, L. & Desideri, U. & Ottaviano, A., 2015. "Challenges in load balance due to renewable energy sources penetration: The possible role of energy storage technologies relative to the Italian case," Energy, Elsevier, vol. 93(P1), pages 393-405.
- Clò, Stefano & Cataldi, Alessandra & Zoppoli, Pietro, 2015.
"The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices,"
Energy Policy, Elsevier, vol. 77(C), pages 79-88.
- Alessandra Cataldi & Stefano Clò & Pietro Zoppoli, 2014. "The merit-order effect in the Italian Power Market: the impact of solar and wind generation on national wholesale electricity prices," Working Papers 9, Department of the Treasury, Ministry of the Economy and of Finance.
- Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
- Erdinc, Ozan & Paterakis, Nikolaos G. & Catalão, João P.S., 2015. "Overview of insular power systems under increasing penetration of renewable energy sources: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 333-346.
- Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
- Paska, Józef & Surma, Tomasz, 2014. "Electricity generation from renewable energy sources in Poland," Renewable Energy, Elsevier, vol. 71(C), pages 286-294.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jarosław Brodny & Magdalena Tutak & Saqib Ahmad Saki, 2020. "Forecasting the Structure of Energy Production from Renewable Energy Sources and Biofuels in Poland," Energies, MDPI, vol. 13(10), pages 1-31, May.
- Florian Ziel, 2020. "The energy distance for ensemble and scenario reduction," Papers 2005.14670, arXiv.org, revised Oct 2020.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
- Dahlke, Steven & Sterling, John & Meehan, Colin, 2019. "Policy and market drivers for advancing clean energy," OSF Preprints hsbry, Center for Open Science.
- Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.
- Oree, Vishwamitra & Sayed Hassen, Sayed Z., 2016. "A composite metric for assessing flexibility available in conventional generators of power systems," Applied Energy, Elsevier, vol. 177(C), pages 683-691.
- Kopiske, Jakob & Spieker, Sebastian & Tsatsaronis, George, 2017. "Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035," Energy, Elsevier, vol. 137(C), pages 823-833.
- Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
- Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
- Chang-Gi Min & Mun-Kyeom Kim, 2017. "Net Load Carrying Capability of Generating Units in Power Systems," Energies, MDPI, vol. 10(8), pages 1-13, August.
- Vanegas Cantarero, María Mercedes, 2018. "Reviewing the Nicaraguan transition to a renewable energy system: Why is “business-as-usual” no longer an option?," Energy Policy, Elsevier, vol. 120(C), pages 580-592.
- Mikkola, Jani & Lund, Peter D., 2016. "Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes," Energy, Elsevier, vol. 112(C), pages 364-375.
- Neetzow, Paul, 2021. "The effects of power system flexibility on the efficient transition to renewable generation," Applied Energy, Elsevier, vol. 283(C).
- Laurent Pagnier & Philippe Jacquod, 2017. "How fast can one overcome the paradox of the energy transition? A physico-economic model for the European power grid," Papers 1706.00330, arXiv.org, revised Jun 2018.
- Javier L'opez Prol & Wolf-Peter Schill, 2020.
"The Economics of Variable Renewables and Electricity Storage,"
Papers
2012.15371, arXiv.org.
- López Prol, Javier & Schill, Wolf-Peter, 2021. "The Economics of Variable Renewables and Electricity Storage," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242463, Verein für Socialpolitik / German Economic Association.
- Saleh Abujarad & Mohd Wazir Mustafa & Jasrul Jamani Jamian & Abdirahman M. Abdilahi & Jeroen D. M. De Kooning & Jan Desmet & Lieven Vandevelde, 2020. "An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems," Energies, MDPI, vol. 13(21), pages 1-19, October.
- Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Panapakidis, Ioannis P., 2017. "Impact of the penetration of renewables on flexibility needs," Energy Policy, Elsevier, vol. 109(C), pages 360-369.
- Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2017. "The impacts of wind and solar on grid flexibility requirements in the Electric Reliability Council of Texas," Energy, Elsevier, vol. 123(C), pages 637-654.
- Abdilahi, Abdirahman M. & Mustafa, Mohd Wazir & Abujarad, Saleh Y. & Mustapha, Mamunu, 2018. "Harnessing flexibility potential of flexible carbon capture power plants for future low carbon power systems: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3101-3110.
- Harder, Nick & Qussous, Ramiz & Weidlich, Anke, 2020. "The cost of providing operational flexibility from distributed energy resources," Applied Energy, Elsevier, vol. 279(C).
- Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
- Pagnier, Laurent & Jacquod, Philippe, 2018. "How fast can one overcome the paradox of the energy transition? A physico-economic model for the European power grid," Energy, Elsevier, vol. 157(C), pages 550-560.
More about this item
Keywords
RES ramping; RES penetration; Power system flexibility;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:703-714. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.