IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp70-78.html
   My bibliography  Save this article

The United States experience as a reference of success for shale gas development: The case of Mexico

Author

Listed:
  • Lozano Maya, Juan Roberto

Abstract

Shale gas has gained increasing worldwide attention in the light of the rapid production and significant effects seen in the United States. Using this case as a reference, several countries have taken the first steps to develop their own resources, with Mexico in particular including shale gas in its energy planning priorities and rushing towards its commercial production, although results have still remained elusive. This paper argues that due to the intrinsic complexity embedded in the shale gas development of the United States, its use as a benchmark by Mexico for policy making purposes is misleading, given the challenges in reproducing the same factors of success on the basis of the contextual differences between both countries. The findings presented can ultimately be helpful for other countries looking forward to or in the process of developing their shale gas resources driven by the same reference.

Suggested Citation

  • Lozano Maya, Juan Roberto, 2013. "The United States experience as a reference of success for shale gas development: The case of Mexico," Energy Policy, Elsevier, vol. 62(C), pages 70-78.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:70-78
    DOI: 10.1016/j.enpol.2013.07.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513007313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.07.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kathleen C. Dominique & Ammar Anees Malik & Valerie Remoquillo-Jenni, 2013. "International benchmarking: Politics and policy-super-1," Science and Public Policy, Oxford University Press, vol. 40(4), pages 504-513, February.
    2. Kaiser, Mark J., 2012. "Profitability assessment of Haynesville shale gas wells," Energy, Elsevier, vol. 38(1), pages 315-330.
    3. Johnson, Corey & Boersma, Tim, 2013. "Energy (in)security in Poland the case of shale gas," Energy Policy, Elsevier, vol. 53(C), pages 389-399.
    4. Theodoros Papaioannou & Howard Rush & John Bessant, 2006. "Benchmarking as a policy-making tool: From the private to the public sector," Science and Public Policy, Oxford University Press, vol. 33(2), pages 91-102, March.
    5. Jenner, Steffen & Lamadrid, Alberto J., 2013. "Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States," Energy Policy, Elsevier, vol. 53(C), pages 442-453.
    6. Blohm, Andrew & Peichel, Jeremy & Smith, Caroline & Kougentakis, Alexandra, 2012. "The significance of regulation and land use patterns on natural gas resource estimates in the Marcellus shale," Energy Policy, Elsevier, vol. 50(C), pages 358-369.
    7. Marianne Paasi, 2005. "Collective benchmarking of policies: an instrument for policy learning in adaptive research and innovation policy," Science and Public Policy, Oxford University Press, vol. 32(1), pages 17-27, February.
    8. Robert Huggins, 2010. "Regional Competitive Intelligence: Benchmarking and Policy-making," Regional Studies, Taylor & Francis Journals, vol. 44(5), pages 639-658.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2016. "Socio-technical analysis of the electricity sector of Mexico: Its historical evolution and implications for a transition towards low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 567-590.
    2. Wu, X.F. & Chen, G.Q., 2017. "Global primary energy use associated with production, consumption and international trade," Energy Policy, Elsevier, vol. 111(C), pages 85-94.
    3. Li, Qiming & Cheng, Ke & Yang, Xiaoguang, 2017. "Response pattern of stock returns to international oil price shocks: From the perspective of China’s oil industrial chain," Applied Energy, Elsevier, vol. 185(P2), pages 1821-1831.
    4. Ma, Zhengwei & Pi, Guanglin & Dong, Xiucheng & Chen, Chi, 2017. "The situation analysis of shale gas development in China-based on Structural Equation Modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1300-1307.
    5. Calderón, Andrés J. & Guerra, Omar J. & Papageorgiou, Lazaros G. & Reklaitis, Gintaras V., 2018. "Disclosing water-energy-economics nexus in shale gas development," Applied Energy, Elsevier, vol. 225(C), pages 710-731.
    6. Kirat, Yassine, 2021. "The US shale gas revolution: An opportunity for the US manufacturing sector?," International Economics, Elsevier, vol. 167(C), pages 59-77.
    7. Centner, Terence J., 2016. "Reducing pollution at five critical points of shale gas production: Strategies and institutional responses," Energy Policy, Elsevier, vol. 94(C), pages 40-46.
    8. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Sualp, M. Nedim, 2016. "How did the US economy react to shale gas production revolution? An advanced time series approach," Energy, Elsevier, vol. 116(P1), pages 963-977.
    9. Yuan, Jiehui & Luo, Dongkun & Xia, Liangyu & Feng, Lianyong, 2015. "Policy recommendations to promote shale gas development in China based on a technical and economic evaluation," Energy Policy, Elsevier, vol. 85(C), pages 194-206.
    10. Aba, Michael M. & Parente, Virginia & dos Santos, Edmilson Moutinho, 2022. "Estimation of water demand of the three major Brazilian shale-gas basins: Implications for water availability," Energy Policy, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp M. Richter, 2015. "From Boom to Bust? A Critical Look at US Shale Gas Projections," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    2. Darrick Evensen & Christopher Clarke & Richard Stedman, 2014. "A New York or Pennsylvania state of mind: social representations in newspaper coverage of gas development in the Marcellus Shale," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(1), pages 65-77, March.
    3. Petrović, Marijana & Bojković, Nataša & Stamenković, Mladen & Anić, Ivan, 2018. "Supporting performance appraisal in ELECTRE based stepwise benchmarking model," Omega, Elsevier, vol. 78(C), pages 237-251.
    4. Li, Boying & Zheng, Mingbo & Zhao, Xinxin & Chang, Chun-Ping, 2021. "An assessment of the effect of partisan ideology on shale gas production and the implications for environmental regulations," Economic Systems, Elsevier, vol. 45(3).
    5. Mikel Navarro Arancegui & Juan José Gibaja Martíns & Susana Franco Rodríguez & Asier Murciego Alonso, 2012. "Territorial Benchmarking Methodology: The Need to Identify Reference Regions," Chapters, in: Philip Cooke & Mario Davide Parrilli & José Luis Curbelo (ed.), Innovation, Global Change and Territorial Resilience, chapter 4, Edward Elgar Publishing.
    6. Isabel Maria Bodas Freitas, 2007. "New instruments in innovation policy: The case of the Department of Trade and Industry in the UK," Science and Public Policy, Oxford University Press, vol. 34(9), pages 644-656, November.
    7. Centner, Terence J., 2013. "Oversight of shale gas production in the United States and the disclosure of toxic substances," Resources Policy, Elsevier, vol. 38(3), pages 233-240.
    8. Grupp, Hariolf & Schubert, Torben, 2010. "Review and new evidence on composite innovation indicators for evaluating national performance," Research Policy, Elsevier, vol. 39(1), pages 67-78, February.
    9. Baranzelli, Claudia & Vandecasteele, Ine & Ribeiro Barranco, Ricardo & Mari i Rivero, Ines & Pelletier, Nathan & Batelaan, Okke & Lavalle, Carlo, 2015. "Scenarios for shale gas development and their related land use impacts in the Baltic Basin, Northern Poland," Energy Policy, Elsevier, vol. 84(C), pages 80-95.
    10. Katie Jo Black & Shawn J. McCoy & Jeremy G. Weber, 2018. "When Externalities Are Taxed: The Effects and Incidence of Pennsylvania’s Impact Fee on Shale Gas Wells," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 107-153.
    11. Cronshaw, Ian & Grafton, R. Quentin, 2016. "Economic benefits, external costs and the regulation of unconventional gas in the United States," Energy Policy, Elsevier, vol. 98(C), pages 180-186.
    12. Xu, Shang & Allen Klaiber, H., 2019. "The impact of new natural gas pipelines on emissions and fuel consumption in China," Resource and Energy Economics, Elsevier, vol. 55(C), pages 49-62.
    13. Gail Krantzberg & Stephanie Theriault, 2017. "Would Implementing Responsible Care® Principles Improve the Safety of the Fracking Industry?," International Journal of Sciences, Office ijSciences, vol. 6(06), pages 55-62, June.
    14. Weber, Jeremy G. & Wang, Yongsheng & Chomas, Maxwell, 2016. "A quantitative description of state-level taxation of oil and gas production in the continental U.S," Energy Policy, Elsevier, vol. 96(C), pages 289-301.
    15. Xiaoqian Guo & Qiang Yan & Anjian Wang, 2017. "Assessment of Methods for Forecasting Shale Gas Supply in China Based on Economic Considerations," Energies, MDPI, vol. 10(11), pages 1-14, October.
    16. Chen, Yan & Xu, Jintao & Wang, Pu, 2020. "Shale gas potential in China: A production forecast of the Wufeng-Longmaxi Formation and implications for future development," Energy Policy, Elsevier, vol. 147(C).
    17. Muhammad Ahmed & Sina Rezaei-Gomari, 2018. "Economic Feasibility Analysis of Shale Gas Extraction from UK’s Carboniferous Bowland-Hodder Shale Unit," Resources, MDPI, vol. 8(1), pages 1-17, December.
    18. Montgomery, J.B. & O’Sullivan, F.M., 2017. "Spatial variability of tight oil well productivity and the impact of technology," Applied Energy, Elsevier, vol. 195(C), pages 344-355.
    19. Auping, Willem L. & Pruyt, Erik & de Jong, Sijbren & Kwakkel, Jan H., 2016. "The geopolitical impact of the shale revolution: Exploring consequences on energy prices and rentier states," Energy Policy, Elsevier, vol. 98(C), pages 390-399.
    20. Kuchler, Magdalena & Höök, Mikael, 2020. "Fractured visions: Anticipating (un)conventional natural gas in Poland," Resources Policy, Elsevier, vol. 68(C).

    More about this item

    Keywords

    Shale gas; United States; Mexico;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:70-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.