IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v55y2019icp49-62.html
   My bibliography  Save this article

The impact of new natural gas pipelines on emissions and fuel consumption in China

Author

Listed:
  • Xu, Shang
  • Allen Klaiber, H.

Abstract

We examine the impact of constructing a new, large scale natural gas pipeline on environmental outcomes and fuel consumption patterns in China. We use the construction of three natural gas pipelines in China, constructed at different times but operated by the same state-owned enterprise, as a quasi-experiment to estimate the impact of pipeline projects as a driver of changes in air quality. We then estimate the impact of the pipeline on firm and household energy choices providing a mechanism to explain the reductions in air pollution we find. The difference-in-differences estimates indicate that placing the pipeline into operation significantly reduced emission intensity and led to an increase in natural gas intensity and decrease in coal intensity in industrial sectors with more limited impacts on residential energy consumption.

Suggested Citation

  • Xu, Shang & Allen Klaiber, H., 2019. "The impact of new natural gas pipelines on emissions and fuel consumption in China," Resource and Energy Economics, Elsevier, vol. 55(C), pages 49-62.
  • Handle: RePEc:eee:resene:v:55:y:2019:i:c:p:49-62
    DOI: 10.1016/j.reseneeco.2018.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765518300757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2018.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Greenstone & Rema Hanna, 2014. "Environmental Regulations, Air and Water Pollution, and Infant Mortality in India," American Economic Review, American Economic Association, vol. 104(10), pages 3038-3072, October.
    2. Lucija Muehlenbachs & Elisheba Spiller & Christopher Timmins, 2015. "The Housing Market Impacts of Shale Gas Development," American Economic Review, American Economic Association, vol. 105(12), pages 3633-3659, December.
    3. Bretschger, Lucas & Zhang, Lin, 2017. "Carbon policy in a high-growth economy: The case of China," Resource and Energy Economics, Elsevier, vol. 47(C), pages 1-19.
    4. Kenneth Y. Chay & Michael Greenstone, 2003. "The Impact of Air Pollution on Infant Mortality: Evidence from Geographic Variation in Pollution Shocks Induced by a Recession," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 1121-1167.
    5. Majumdar, Devleena & Kar, Saibal, 2017. "Does technology diffusion help to reduce emission intensity? Evidence from organized manufacturing and agriculture in India," Resource and Energy Economics, Elsevier, vol. 48(C), pages 30-41.
    6. Christiaensen, Luc & Heltberg, Rasmus, 2014. "Greening China's rural energy: new insights on the potential of smallholder biogas," Environment and Development Economics, Cambridge University Press, vol. 19(1), pages 8-29, February.
    7. Resul Cesur & Erdal Tekin & Aydogan Ulker, 2017. "Air Pollution and Infant Mortality: Evidence from the Expansion of Natural Gas Infrastructure," Economic Journal, Royal Economic Society, vol. 127(600), pages 330-362, March.
    8. Thomas Covert & Michael Greenstone & Christopher R. Knittel, 2016. "Will We Ever Stop Using Fossil Fuels?," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 117-138, Winter.
    9. Viard, V. Brian & Fu, Shihe, 2015. "The effect of Beijing's driving restrictions on pollution and economic activity," Journal of Public Economics, Elsevier, vol. 125(C), pages 98-115.
    10. Seema Jayachandran, 2009. "Air Quality and Early-Life Mortality: Evidence from Indonesia’s Wildfires," Journal of Human Resources, University of Wisconsin Press, vol. 44(4).
    11. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    12. Mao, Xianqiang & Guo, Xiurui & Chang, Yongguan & Peng, Yingdeng, 2005. "Improving air quality in large cities by substituting natural gas for coal in China: changing idea and incentive policy implications," Energy Policy, Elsevier, vol. 33(3), pages 307-318, February.
    13. Maximilian Auffhammer & Ryan Kellogg, 2011. "Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality," American Economic Review, American Economic Association, vol. 101(6), pages 2687-2722, October.
    14. World Bank, 2017. "World Development Indicators 2017," World Bank Publications - Books, The World Bank Group, number 26447.
    15. Jenner, Steffen & Lamadrid, Alberto J., 2013. "Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States," Energy Policy, Elsevier, vol. 53(C), pages 442-453.
    16. Resul Cesur & Erdal Tekin & Aydogan Ulker, 2017. "Air Pollution and Infant Mortality: Evidence from the Expansion of Natural Gas Infrastructure," Economic Journal, Royal Economic Society, vol. 127(600), pages 330-362, March.
    17. Finkel, M.L. & Law, A., 2011. "The rush to drill for natural gas: A public health cautionary tale," American Journal of Public Health, American Public Health Association, vol. 101(5), pages 784-785.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xinjuan & Ge, Hongxia & Cheng, Rongjun, 2019. "Influences of acceleration with memory on stability of traffic flow and vehicle’s fuel consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 143-154.
    2. Luo, Yaping & Wu, Jianxian, 2024. "Before dinner: The health value of gaseous fuels," Energy Policy, Elsevier, vol. 185(C).
    3. Lin, Boqiang & Li, Zhensheng, 2021. "Does natural gas pricing reform establish an effective mechanism in China: A policy evaluation perspective," Applied Energy, Elsevier, vol. 282(PA).
    4. Walls, W.D. & Zheng, Xiaoli, 2021. "Environmental regulation and safety outcomes: Evidence from energy pipelines in Canada," Resource and Energy Economics, Elsevier, vol. 64(C).
    5. Gao, Yanyan & Zheng, Jianghuai, 2022. "Clearing the air through pipes? An evaluation of the air pollution reduction effect of China's natural gas pipeline projects," Energy Policy, Elsevier, vol. 160(C).
    6. Gao, Yanyan & Zheng, Jianghuai & Wang, Xin, 2022. "Does high-speed rail reduce environmental pollution? Establishment-level evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    7. Xu, Shang & Zhang, Jun, 2023. "The welfare impacts of removing coal subsidies in rural China," Energy Economics, Elsevier, vol. 118(C).
    8. Xin Guan & Xiangyi Lu & Yang Wen, 2022. "Is China’s Natural Gas Consumption Converging? Empirical Research Based on Spatial Econometrics," Energies, MDPI, vol. 15(24), pages 1-13, December.
    9. Wang, Xiaolin & Lu, Xiangyi & Chen, Jun & Hu, Xiangping, 2024. "The border effects and choices of competitive strategies of the provincial natural gas markets in China," Resources Policy, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Shang & Klaiber, Allen, 2018. "Provision of Natural Gas Infrastructure and Shifts in Fuel Patterns," 2018 Annual Meeting, August 5-7, Washington, D.C. 274447, Agricultural and Applied Economics Association.
    2. Wang, Yangjie & Chen, Xiaohong & Ren, Shenggang, 2019. "Clean energy adoption and maternal health: Evidence from China," Energy Economics, Elsevier, vol. 84(C).
    3. Fukushima, Nanna, 2021. "The UK Clean Air Act, Black Smoke, and Infant Mortality," CAGE Online Working Paper Series 587, Competitive Advantage in the Global Economy (CAGE).
    4. Cheung, Chun Wai & He, Guojun & Pan, Yuhang, 2020. "Mitigating the air pollution effect? The remarkable decline in the pollution-mortality relationship in Hong Kong," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    5. Cesur, Resul & Tekin, Erdal & Ulker, Aydogan, 2018. "Can natural gas save lives? Evidence from the deployment of a fuel delivery system in a developing country," Journal of Health Economics, Elsevier, vol. 59(C), pages 91-108.
    6. Wang, Linfeng & Shi, Tie & Chen, Hanyi, 2023. "Air pollution and infant mortality: Evidence from China," Economics & Human Biology, Elsevier, vol. 49(C).
    7. Marcos A. Rangel & Tom S. Vogl, 2019. "Agricultural Fires and Health at Birth," The Review of Economics and Statistics, MIT Press, vol. 101(4), pages 616-630, October.
    8. Guidetti, Bruna & Pereda, Paula & Severnini, Edson R., 2020. "Health Shocks under Hospital Capacity Constraint: Evidence from Air Pollution in Sao Paulo, Brazil," IZA Discussion Papers 13211, Institute of Labor Economics (IZA).
    9. Adhvaryu, Achyuta & Molina, Teresa & Nyshadham, Anant & Tamayo, Jorge & Torres, Nicolas, 2023. "The health costs of dirty energy: Evidence from the capacity market in Colombia," Journal of Development Economics, Elsevier, vol. 164(C).
    10. Imelda, Imelda, 2019. "Cooking that Kills : Cleaner Energy, Indoor Air Pollution, and Health," UC3M Working papers. Economics 27982, Universidad Carlos III de Madrid. Departamento de Economía.
    11. Bruna Morais Guidetti & Paula Carvalho Pereda, Edson Roberto Severnini, 2021. "Health Shocks under Hospital Capacity Constraints: Evidence from Air Pollution in São Paulo, Brazil," Working Papers, Department of Economics 2021_05, University of São Paulo (FEA-USP).
    12. Rivera, Nathaly M., 2021. "Air quality warnings and temporary driving bans: Evidence from air pollution, car trips, and mass-transit ridership in Santiago," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    13. Babak Jahanshahi & Brian Johnston & Mark E. McGovern & Duncan McVicar & Dermot O’Reilly & Neil Rowland & Stavros Vlachos, 2024. "Prenatal exposure to particulate matter and infant birth outcomes: Evidence from a population‐wide database," Health Economics, John Wiley & Sons, Ltd., vol. 33(9), pages 2182-2200, September.
    14. Ziebarth, Nicolas R. & Schmitt, Maike & Karlsson, Martin, 2013. "The Short-Term Population Health Effects of Weather and Pollution: Implications of Climate Change," IZA Discussion Papers 7875, Institute of Labor Economics (IZA).
    15. Syed Hasan & Odmaa Narantungalag, & Martin Berka, 2022. "The intended and unintended consequences of large electricity subsidies: evidence from Mongolia," Discussion Papers 2202, School of Economics and Finance, Massey University, New Zealand.
    16. Colmer, Jonathan & Lin, Dajun & Liu, Siying & Shimshack, Jay, 2021. "Why are pollution damages lower in developed countries? Insights from high-Income, high-particulate matter Hong Kong," Journal of Health Economics, Elsevier, vol. 79(C).
    17. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    18. Teevrat Garg & Maulik Jagnani & Hemant K. Pullabhotla, 2022. "Structural transformation and environmental externalities," Papers 2212.02664, arXiv.org.
    19. Anna Bruederle & Roland Hodler, 2017. "The Effect of Oil Spills on Infant Mortality: Evidence from Nigeria," CESifo Working Paper Series 6653, CESifo.
    20. Ball, Alastair, 2014. "Air pollution, foetal mortality, and long-term health: Evidence from the Great London Smog," MPRA Paper 63229, University Library of Munich, Germany, revised 25 Mar 2015.

    More about this item

    Keywords

    Natural gas; Energy infrastructure; Energy consumption; Air quality; Quasi-experiment; China;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:55:y:2019:i:c:p:49-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.