IDEAS home Printed from https://ideas.repec.org/f/c/ppe589.html
   My authors  Follow this author

Stefanie Peer

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Ondřej Krčál & Stefanie Peer & Rostislav Staněk, 2021. "Can time-inconsistent preferences explain hypothetical biases?," MUNI ECON Working Papers 2021-01, Masaryk University, revised Feb 2023.

    Cited by:

    1. Kosíková, Renata & Krčál, Ondřej & Peer, Stefanie, 2024. "The value of time in a repeated and one-off setup," Research in Transportation Economics, Elsevier, vol. 103(C).

  2. Martin Adler & Stefanie Peer & Tanja Sinozic, 2019. "Autonomous, Connected, Electric Shared vehicles (ACES) and public finance: an explorative analysis," Tinbergen Institute Discussion Papers 19-005/VIII, Tinbergen Institute.

    Cited by:

    1. Sirikhan, Kulacha, 2022. "Potentials and Challenges of The Connected Autonomous Shared Electric Vehicle (CASE) from Urban Geography Perspective in Southeast Asia Mega-Urban Regions," 31st European Regional ITS Conference, Gothenburg 2022: Reining in Digital Platforms? Challenging monopolies, promoting competition and developing regulatory regimes 265670, International Telecommunications Society (ITS).
    2. Doyeon Lee & Keunhwan Kim, 2021. "A Collaborative Trans-Regional R&D Strategy for the South Korea Green New Deal to Achieve Future Mobility," Sustainability, MDPI, vol. 13(15), pages 1-30, August.
    3. Yu Chen & Di Zhu, 2024. "Economic impact of ACES trends on the automotive value chain: a forecast exploratory study of the Chinese automotive industry in 2030," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    4. Peer, Stefanie & Müller, Johannes & Naqvi, Asjad & Straub, Markus, 2024. "Introducing shared, electric, autonomous vehicles (SAEVs) in sub-urban zones: Simulating the case of Vienna," Transport Policy, Elsevier, vol. 147(C), pages 232-243.
    5. Chen, Ching-Fu & Lee, Chia-Han, 2023. "Investigating shared e-scooter users’ customer value co-creation behaviors and their antecedents: Perceived service quality and perceived value," Transport Policy, Elsevier, vol. 136(C), pages 147-154.
    6. Bretones, Alexandra & Marquet, Oriol, 2022. "Sociopsychological factors associated with the adoption and usage of electric micromobility. A literature review," Transport Policy, Elsevier, vol. 127(C), pages 230-249.
    7. Sovacool, Benjamin K. & Daniels, Chux & AbdulRafiu, Abbas, 2022. "Transitioning to electrified, automated and shared mobility in an African context: A comparative review of Johannesburg, Kigali, Lagos and Nairobi," Journal of Transport Geography, Elsevier, vol. 98(C).
    8. Anastasia Roukouni & Gonçalo Homem de Almeida Correia, 2020. "Evaluation Methods for the Impacts of Shared Mobility: Classification and Critical Review," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    9. Papaix, Claire & Eranova, Mariya & Zhou, Li, 2023. "Shared mobility research: Looking through a paradox lens," Transport Policy, Elsevier, vol. 133(C), pages 156-167.

  3. Ondřej Krčál & Rostislav Staněk & Bára Karlínová & Stefanie Peer, 2019. "Real consequences matters: why hypothetical biases in the valuation of time persist even in controlled lab experiments," MUNI ECON Working Papers 2019-03, Masaryk University, revised Feb 2023.

    Cited by:

    1. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part I. Integrative synthesis of empirical evidence and conceptualisation of external validity," Papers 2102.02940, arXiv.org.
    2. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part II. Conceptualisation of external validity, sources and explanations of bias and effectiveness of mitigation methods," Journal of choice modelling, Elsevier, vol. 41(C).
    3. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part I. Macro-scale analysis of literature and integrative synthesis of empirical evidence from applied economics, experimental psychology and neuroimag," Journal of choice modelling, Elsevier, vol. 41(C).
    4. Kosíková, Renata & Krčál, Ondřej & Peer, Stefanie, 2024. "The value of time in a repeated and one-off setup," Research in Transportation Economics, Elsevier, vol. 103(C).
    5. Tsoleridis, Panagiotis & Choudhury, Charisma F. & Hess, Stephane, 2022. "Deriving transport appraisal values from emerging revealed preference data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 225-245.
    6. Ondřej Krčál & Stefanie Peer & Rostislav Staněk, 2021. "Can time-inconsistent preferences explain hypothetical biases?," MUNI ECON Working Papers 2021-01, Masaryk University, revised Feb 2023.

  4. Stefanie Peer & Jasper Knockaert & Erik Verhoef, 2015. "Train Commuters' Scheduling Preferences: Evidence from a Large-Scale Peak Avoidance Experiment," Tinbergen Institute Discussion Papers 15-078/VIII, Tinbergen Institute.

    Cited by:

    1. Singh, Jyotsna & Homem de Almeida Correia, Gonçalo & van Wee, Bert & Barbour, Natalia, 2023. "Change in departure time for a train trip to avoid crowding during the COVID-19 pandemic: A latent class study in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    2. Vautard, Félix & Liu, Chengxi & Fröidh, Oskar & Byström, Camilla, 2021. "Estimation of interregional rail passengers’ valuations for their desired departure times," Transport Policy, Elsevier, vol. 103(C), pages 183-196.
    3. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    4. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part I. Integrative synthesis of empirical evidence and conceptualisation of external validity," Papers 2102.02940, arXiv.org.
    5. Raphaël Homayoun Boroumand & Stéphane Goutte & Thomas Péran & Thomas Porcher, 2019. "Worker mobility and the purchase of low CO2 emission vehicles in France: a datamining approach," Post-Print halshs-01968001, HAL.
    6. Adnan, Muhammad & Nahmias Biran, Bat-hen & Baburajan, Vishnu & Basak, Kakali & Ben-Akiva, Moshe, 2020. "Examining impacts of time-based pricing strategies in public transportation: A study of Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 127-141.
    7. Yen, Barbara T.H. & Mulley, Corinne & Meza, Gerardo, 2023. "Exploring the attitudes and perceptions influencing user participation in gamification schemes for TDM," Research in Transportation Economics, Elsevier, vol. 99(C).
    8. Jinwon Kim & Jucheol Moon, 2022. "Congestion Costs and Scheduling Preferences of Car Commuters in California: Estimates Using Big Data," Working Papers 2201, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    9. Yang, Hai & Tang, Yili, 2018. "Managing rail transit peak-hour congestion with a fare-reward scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 122-136.
    10. Jasper Knockaert & Stefanie Peer & Erik Verhoef, 2016. "Identification of self-selection biases in field experiments using stated preference experiments," Natural Field Experiments 00568, The Field Experiments Website.
    11. Anupriya, & Graham, Daniel J. & Hörcher, Daniel & Anderson, Richard J. & Bansal, Prateek, 2020. "Quantifying the ex-post causal impact of differential pricing on commuter trip scheduling in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 16-34.
    12. Allister Loder & Fabienne Cantner & Lennart Adenaw & Markus Siewert & Sebastian Goerg & Markus Lienkamp & Klaus Bogenberger, 2022. "A nation-wide experiment: fuel tax cuts and almost free public transport for three months in Germany -- Report 1 Study design, recruiting and participation," Papers 2206.00396, arXiv.org.
    13. Jiang, Feng & Cacchiani, Valentina & Toth, Paolo, 2017. "Train timetabling by skip-stop planning in highly congested lines," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 149-174.
    14. An, Qinhe & Fu, Xiao & Huang, Di & Cheng, Qixiu & Liu, Zhiyuan, 2020. "Analysis of adding-runs strategy for peak-hour regular bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    15. Wang, Yu & Wang, Yacan & Ettema, Dick & Mao, Zidan & Charlton, Samuel G. & Zhou, Huiyu, 2020. "Commuter value perceptions in peak avoidance behavior: An empirical study in the Beijing subway system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 70-84.
    16. Peer, Stefanie & Börjesson, Maria, 2018. "Temporal framing of stated preference experiments: does it affect valuations?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 319-333.
    17. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).

  5. Paul Koster & Stefanie Peer & Thijs Dekker, 2014. "Memory, Expectation Formation and Scheduling Choices," Tinbergen Institute Discussion Papers 14-154/VIII, Tinbergen Institute.

    Cited by:

    1. Geng, Kexin & Wang, Yacan & Cherchi, Elisabetta & Guarda, Pablo, 2023. "Commuter departure time choice behavior under congestion charge: Analysis based on cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    2. Ondřej Krčál & Rostislav Staněk & Bára Karlínová & Stefanie Peer, 2019. "Real consequences matters: why hypothetical biases in the valuation of time persist even in controlled lab experiments," MUNI ECON Working Papers 2019-03, Masaryk University, revised Feb 2023.
    3. Tscharaktschiew, Stefan, 2016. "The private (unnoticed) welfare cost of highway speeding behavior from time saving misperceptions," Economics of Transportation, Elsevier, vol. 7, pages 24-37.
    4. Fu, Jianhua & Zhang, Yongqing, 2020. "Valuation of travel time reliability: Considering the traveler's adaptive expectation with an indifference band on daily trip duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 337-353.

  6. Stefanie Peer & Jasper Knockaert & Paul Koster & Erik Verhoef, 2013. "Overreporting vs. Overreacting: Commuters' Perceptions of Travel Times," Tinbergen Institute Discussion Papers 13-123/VIII, Tinbergen Institute, revised 25 Aug 2013.

    Cited by:

    1. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    2. Lissy Paix & Abu Toasin Oakil & Frank Hofman & Karst Geurs, 2022. "The influence of panel effects and inertia on travel cost elasticities for car use and public transport," Transportation, Springer, vol. 49(3), pages 989-1016, June.
    3. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part I. Integrative synthesis of empirical evidence and conceptualisation of external validity," Papers 2102.02940, arXiv.org.
    4. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Tseng, Yin-Yen & Verhoef, Erik T., 2013. "Door-to-door travel times in RP departure time choice models: An approximation method using GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 134-150.
    5. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part I. Macro-scale analysis of literature and integrative synthesis of empirical evidence from applied economics, experimental psychology and neuroimag," Journal of choice modelling, Elsevier, vol. 41(C).
    6. Li, Zheng & Hensher, David A. & Rose, John M., 2010. "Willingness to pay for travel time reliability in passenger transport: A review and some new empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 384-403, May.
    7. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 520-541.
    8. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    9. Ondřej Krčál & Rostislav Staněk & Bára Karlínová & Stefanie Peer, 2019. "Real consequences matters: why hypothetical biases in the valuation of time persist even in controlled lab experiments," MUNI ECON Working Papers 2019-03, Masaryk University, revised Feb 2023.
    10. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Working papers in Transport Economics 2018:3, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    11. Stefanie Peer & Erik Verhoef & Jasper Knockaert & Paul Koster & Yin‐Yen Tseng, 2015. "Long‐Run Versus Short‐Run Perspectives On Consumer Scheduling: Evidence From A Revealed‐Preference Experiment Among Peak‐Hour Road Commuters," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(1), pages 303-323, February.
    12. Chakroborty, Partha & Pinjari, Abdul Rawoof & Meena, Jayant & Gandhi, Avinash, 2021. "A Psychophysical Ordered Response Model of Time Perception and Service Quality: Application to Level of Service Analysis at Toll Plazas," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 44-64.
    13. Ties Brands & Malvika Dixit & Edgard Zúñiga & Niels Oort, 2022. "Perceived and actual travel times in a multi-modal urban public transport network: comparing survey and AVL data," Public Transport, Springer, vol. 14(1), pages 85-103, March.
    14. Ondřej Krčál & Stefanie Peer & Rostislav Staněk, 2021. "Can time-inconsistent preferences explain hypothetical biases?," MUNI ECON Working Papers 2021-01, Masaryk University, revised Feb 2023.
    15. Mengying Cui & David Levinson, 2021. "Shortest paths, travel costs, and traffic," Working Papers 2021-03, University of Minnesota: Nexus Research Group.
    16. Koster, Paul R. & Koster, Hans R.A., 2015. "Commuters’ preferences for fast and reliable travel: A semi-parametric estimation approach," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 289-301.
    17. Jasper Knockaert & Stefanie Peer & Erik Verhoef, 2016. "Identification of self-selection biases in field experiments using stated preference experiments," Natural Field Experiments 00568, The Field Experiments Website.
    18. Dixit, Vinayak & Jian, Sisi & Hassan, Asif & Robson, Edward, 2019. "Eliciting perceptions of travel time risk and exploring its impact on value of time," Transport Policy, Elsevier, vol. 82(C), pages 36-45.
    19. Lizana, Pedro & Ortúzar, Juan de Dios & Arellana, Julián & Rizzi, Luis I., 2021. "Forecasting with a joint mode/time-of-day choice model based on combined RP and SC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 302-316.
    20. Heike Link & Dennis Gaus & Neil Murray & Maria Fernanda Guajardo Ortega & Flavien Gervois & Frederik von Waldow & Sofia Eigner, 2023. "Combining GPS Tracking and Surveys for a Mode Choice Model: Processing Data from a Quasi-Natural Experiment in Germany," Discussion Papers of DIW Berlin 2047, DIW Berlin, German Institute for Economic Research.
    21. Carlos Carrion & David Levinson, 2019. "Overestimation and underestimation of travel time on commute trips: GPS vs. self- reporting," Working Papers 2019-05, University of Minnesota: Nexus Research Group.
    22. Varotto, Silvia F. & Glerum, Aurélie & Stathopoulos, Amanda & Bierlaire, Michel & Longo, Giovanni, 2017. "Mitigating the impact of errors in travel time reporting on mode choice modelling," Journal of Transport Geography, Elsevier, vol. 62(C), pages 236-246.
    23. Yinger, John, 2021. "The price of access to jobs: Bid-function envelopes for commuting costs✰," Journal of Housing Economics, Elsevier, vol. 51(C).

  7. Stefanie Peer & Erik T. Verhoef, 2013. "Equilibrium at a Bottleneck when Long-Run and Short-Run Scheduling Preferences diverge," Tinbergen Institute Discussion Papers 13-028/VIII, Tinbergen Institute.

    Cited by:

    1. Takayama, Yuki, 2014. "Bottleneck congestion and distribution of work start times: The economics of staggered work hours revisited," MPRA Paper 59033, University Library of Munich, Germany.
    2. Kosíková, Renata & Krčál, Ondřej & Peer, Stefanie, 2024. "The value of time in a repeated and one-off setup," Research in Transportation Economics, Elsevier, vol. 103(C).
    3. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    4. Stefanie Peer & Erik Verhoef & Jasper Knockaert & Paul Koster & Yin‐Yen Tseng, 2015. "Long‐Run Versus Short‐Run Perspectives On Consumer Scheduling: Evidence From A Revealed‐Preference Experiment Among Peak‐Hour Road Commuters," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(1), pages 303-323, February.
    5. Stefanie Peer & Erik Verhoef & Jasper Knockaert & Paul Koster & Yin-Yen Tseng, 2011. "Long-Run vs. Short-Run Perspectives on Consumer Scheduling: Evidence from a Revealed-Preference Experiment among Peak-Hour Road Commuters," Tinbergen Institute Discussion Papers 11-181/3, Tinbergen Institute, revised 25 Aug 2014.
    6. Verhoef, Erik T., 2020. "Optimal congestion pricing with diverging long-run and short-run scheduling preferences," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 191-209.
    7. Takayama, Yuki & Kuwahara, Masao, 2016. "Scheduling preferences, parking competition, and bottleneck congestion: A model of trip timing and parking location choices by heterogeneous commuters," MPRA Paper 68938, University Library of Munich, Germany.
    8. Xiaojuan Yu & Vincent A.C. van den Berg & Erik T. Verhoef, 2024. "Preference heterogeneity in a dynamic flow congestion model," Tinbergen Institute Discussion Papers 24-025/VIII, Tinbergen Institute.
    9. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.

  8. Stefanie Peer & Erik Verhoef & Jasper Knockaert & Paul Koster & Yin-Yen Tseng, 2011. "Long-Run vs. Short-Run Perspectives on Consumer Scheduling: Evidence from a Revealed-Preference Experiment among Peak-Hour Road Commuters," Tinbergen Institute Discussion Papers 11-181/3, Tinbergen Institute, revised 25 Aug 2014.

    Cited by:

    1. Paul Koster & Stefanie Peer & Thijs Dekker, 2014. "Memory, Expectation Formation and Scheduling Choices," Tinbergen Institute Discussion Papers 14-154/VIII, Tinbergen Institute.
    2. Verhoef, Erik T., 2020. "Optimal congestion pricing with diverging long-run and short-run scheduling preferences," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 191-209.
    3. Peer, Stefanie & Verhoef, Erik T., 2013. "Equilibrium at a bottleneck when long-run and short-run scheduling preferences diverge," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 12-27.
    4. Jasper Knockaert & Stefanie Peer & Erik Verhoef, 2016. "Identification of self-selection biases in field experiments using stated preference experiments," Natural Field Experiments 00568, The Field Experiments Website.
    5. Stefanie Peer & Jasper Knockaert & Erik Verhoef, 2015. "Train Commuters' Scheduling Preferences: Evidence from a Large-Scale Peak Avoidance Experiment," Tinbergen Institute Discussion Papers 15-078/VIII, Tinbergen Institute.
    6. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    7. Peer, Stefanie & Börjesson, Maria, 2018. "Temporal framing of stated preference experiments: does it affect valuations?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 319-333.

  9. Stefanie Peer & Jasper Knockaert & Paul Koster & Yin-Yen Tseng & Erik Verhoef, 2011. "Door-to-Door Travel Times in RP Departure Time Choice Models: An Approximation Method based on GPS," Tinbergen Institute Discussion Papers 11-180/3, Tinbergen Institute, revised 25 Aug 2014.

    Cited by:

    1. Stefanie Peer & Erik Verhoef & Jasper Knockaert & Paul Koster & Yin‐Yen Tseng, 2015. "Long‐Run Versus Short‐Run Perspectives On Consumer Scheduling: Evidence From A Revealed‐Preference Experiment Among Peak‐Hour Road Commuters," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(1), pages 303-323, February.
    2. Stefanie Peer & Jasper Knockaert & Paul Koster & Erik Verhoef, 2013. "Overreporting vs. Overreacting: Commuters' Perceptions of Travel Times," Tinbergen Institute Discussion Papers 13-123/VIII, Tinbergen Institute, revised 25 Aug 2013.

  10. Stefanie Peer & Carl Koopmans & Erik T. Verhoef, 2010. "Predicting Travel Time Variability for Cost-Benefit Analysis," Tinbergen Institute Discussion Papers 10-071/3, Tinbergen Institute.

    Cited by:

    1. Bergström, Anna & Krüger, Niclas, 2013. "Modeling Passenger Train Delay Distributions - Evidence and Implications," Karlstad University Working Papers in Economics 10, Karlstad University, Department of Economics.
    2. Paul Koster & Eric Pels & Erik Verhoef, 2016. "The User Costs of Air Travel Delay Variability," Transportation Science, INFORMS, vol. 50(1), pages 120-131, February.
    3. Matthias Sweet & Mengke Chen, 2011. "Does regional travel time unreliability influence mode choice?," Transportation, Springer, vol. 38(4), pages 625-642, July.
    4. Jeremy Webb & Max Briggs & Clevo Wilson, 2018. "Breaking automotive modal lock-in: a choice modelling study of Jakarta commuters," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 47-68, January.
    5. Paul Koster & Stefanie Peer & Thijs Dekker, 2014. "Memory, Expectation Formation and Scheduling Choices," Tinbergen Institute Discussion Papers 14-154/VIII, Tinbergen Institute.
    6. Khademi, Navid & Kharrazi, Hamed & Chen, Anthony & Chaiyasarn, Krisada & Zerguini, Seghir, 2024. "Departure time choices and a modeling framework for a guidance system," Journal of choice modelling, Elsevier, vol. 51(C).
    7. Parry, Ian, 2015. "Designing Fiscal Policy to Address the External Costs of Energy," International Review of Environmental and Resource Economics, now publishers, vol. 8(1), pages 1-56, May.
    8. Paul Koster & Hans Koster, 2013. "Analysing Heterogeneity in the Value of Travel Time and Reliability: A Semiparametric Estimation Approach," ERSA conference papers ersa13p1032, European Regional Science Association.
    9. Tu, Huizhao & Li, Hao & van Lint, Hans & van Zuylen, Henk, 2012. "Modeling travel time reliability of freeways using risk assessment techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1528-1540.
    10. Wang, Qian & Sundberg, Marcus & Karlström, Anders, 2013. "Scheduling choices under rank dependent utility maximization," Working papers in Transport Economics 2013:16, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    11. Stefanie Peer & Erik Verhoef & Jasper Knockaert & Paul Koster & Yin‐Yen Tseng, 2015. "Long‐Run Versus Short‐Run Perspectives On Consumer Scheduling: Evidence From A Revealed‐Preference Experiment Among Peak‐Hour Road Commuters," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(1), pages 303-323, February.
    12. Eric Kroes & Paul Koster & Stefanie Peer, 2018. "A practical method to estimate the benefits of improved road network reliability: an application to departing air passengers," Transportation, Springer, vol. 45(5), pages 1433-1448, September.
    13. Sergejs Gubins & Erik T. Verhoef & Thomas de Graaff, 2010. "Welfare Effects of Road Pricing and Traffic Information under Alternative Ownership Regimes," Tinbergen Institute Discussion Papers 10-091/3, Tinbergen Institute.
    14. Stefanie Peer & Erik Verhoef & Jasper Knockaert & Paul Koster & Yin-Yen Tseng, 2011. "Long-Run vs. Short-Run Perspectives on Consumer Scheduling: Evidence from a Revealed-Preference Experiment among Peak-Hour Road Commuters," Tinbergen Institute Discussion Papers 11-181/3, Tinbergen Institute, revised 25 Aug 2014.
    15. Paul Koster & Eric Kroes & Erik T. Verhoef, 2010. "Travel Time Variability and Airport Accessibility," Tinbergen Institute Discussion Papers 10-061/3, Tinbergen Institute.
    16. Eric Kroes & Paul R. Koster & Stefanie Peer, 2014. "A Practical Method to estimate the Benefits of Improved Network Reliability: An Application to Departing Air Passengers," Tinbergen Institute Discussion Papers 14-130/VIII, Tinbergen Institute.
    17. Bardal, Kjersti Granås & Mathisen, Terje Andreas, 2015. "Winter problems on mountain passes – Implications for cost-benefit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 59-72.
    18. Sjoerd van der Spoel & Chintan Amrit & Jos van Hillegersberg, 2017. "Predictive analytics for truck arrival time estimation: a field study at a European distribution centre," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5062-5078, September.
    19. Kim, Jiwon & Mahmassani, Hani S., 2015. "Compound Gamma representation for modeling travel time variability in a traffic network," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 40-63.
    20. Koopmans, Carl & Groot, Wim & Warffemius, Pim & Annema, Jan Anne & Hoogendoorn-Lanser, Sascha, 2013. "Measuring generalised transport costs as an indicator of accessibility changes over time," Transport Policy, Elsevier, vol. 29(C), pages 154-159.
    21. Kathrin Goldmann & Gernot Sieg, 2020. "Quantifying the phantom jam externality: The case of an Autobahn section in Germany," Working Papers 30, Institute of Transport Economics, University of Muenster.
    22. Alejandro Tirachini & David Hensher & Michiel Bliemer, 2014. "Accounting for travel time variability in the optimal pricing of cars and buses," Transportation, Springer, vol. 41(5), pages 947-971, September.
    23. de Jong, Gerard C. & Bliemer, Michiel C.J., 2015. "On including travel time reliability of road traffic in appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 80-95.
    24. Eliasson, Jonas, 2019. "Modelling reliability benefits," MPRA Paper 94817, University Library of Munich, Germany.

Articles

  1. Hössinger, Reinhard & Peer, Stefanie & Juschten, Maria, 2023. "Give citizens a task: An innovative tool to compose policy bundles that reach the climate goal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).

    Cited by:

    1. Mehdizadeh, Milad & Solbu, Gisle & Klöckner, Christian A. & Moe Skjølsvold, Tomas, 2024. "Navigating acceptance and controversy of transport policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    2. Eckert, Linus & Schemel, Benjamin & Stagl, Sigrid, 2024. "Gesellschaftliche Akzeptanz von Klimaschutzmaßnahmen," Ecological Economic Papers 47/2024, WU Vienna University of Economics and Business.

  2. Schmid, Basil & Molloy, Joseph & Peer, Stefanie & Jokubauskaite, Simona & Aschauer, Florian & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2021. "The value of travel time savings and the value of leisure in Zurich: Estimation, decomposition and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 186-215.

    Cited by:

    1. Meister, Adrian & Felder, Matteo & Schmid, Basil & Axhausen, Kay W., 2023. "Route choice modeling for cyclists on urban networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    2. Ginés de Rus & M. Pilar Socorro & Jorge Valido & Javier Campos, 2023. "Cost–Benefit Analysis of Transport Projects: Theoretical Framework and Practical Rules," Springer Books, in: Economic Evaluation of Transport Projects, chapter 0, pages 11-42, Springer.
    3. Schmid, Basil & Becker, Felix & Axhausen, Kay W. & Widmer, Paul & Stein, Petra, 2023. "A simultaneous model of residential location, mobility tool ownership and mode choice using latent variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    4. Credit, Kevin & O'Driscoll, Conor, 2024. "Assessing modal tradeoffs and associated built environment characteristics using a cost-distance framework," Journal of Transport Geography, Elsevier, vol. 117(C).
    5. Hirte, Georg & Laes, Renée & Gerike, Regine, 2023. "Working from self-driving cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    6. Rossetti, Tomás & Broaddus, Andrea & Ruhl, Melissa & Daziano, Ricardo, 2023. "Commuter preferences for a first-mile/last-mile microtransit service in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    7. Milos Balac & Sebastian Hörl & Basil Schmid, 2024. "Discrete choice modeling with anonymized data," Transportation, Springer, vol. 51(2), pages 351-370, April.
    8. Xu, Zhandong & Chen, Anthony & Li, Guoyuan & Li, Zhengyang & Liu, Xiaobo, 2024. "Elastic-demand bi-criteria traffic assignment under the continuously distributed value of time: A two-stage gradient projection algorithm with graphical interpretations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    9. Luh, Sandro & Kannan, Ramachandran & McKenna, Russell & Schmidt, Thomas J. & Kober, Tom, 2024. "Quantifying the impact of travel time duration and valuation on modal shift in Swiss passenger transportation," Applied Energy, Elsevier, vol. 356(C).
    10. Xu, Guangming & Liu, Yihan & Gao, Yihan & Liu, Wei, 2023. "Integrated optimization of train stopping plan and seat allocation scheme for railway systems under equilibrium travel choice and elastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    11. Wang, Weiying & Osaragi, Toshihiro, 2024. "Lognormal distribution of daily travel time and a utility model for its emergence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    12. Pougala, Janody & Hillel, Tim & Bierlaire, Michel, 2022. "Capturing trade-offs between daily scheduling choices," Journal of choice modelling, Elsevier, vol. 43(C).
    13. Bottero, Marta & Bravi, Marina & Caprioli, Caterina & Dell'Anna, Federico, 2023. "Combining Revealed and Stated Preferences to design a new urban park in a metropolitan area of North-Western Italy," Ecological Modelling, Elsevier, vol. 483(C).
    14. Hirte, Georg & Laes, Renée, 2022. "Working from self-driving cars," CEPIE Working Papers 01/22, Technische Universität Dresden, Center of Public and International Economics (CEPIE).

  3. Krčál, Ondřej & Peer, Stefanie & Staněk, Rostislav, 2021. "Can time-inconsistent preferences explain hypothetical biases?," Economics of Transportation, Elsevier, vol. 25(C).
    See citations under working paper version above.
  4. Reinhard Hössinger & Florian Aschauer & Sergio Jara-Díaz & Simona Jokubauskaite & Basil Schmid & Stefanie Peer & Kay W. Axhausen & Regine Gerike, 2020. "A joint time-assignment and expenditure-allocation model: value of leisure and value of time assigned to travel for specific population segments," Transportation, Springer, vol. 47(3), pages 1439-1475, June.

    Cited by:

    1. Brenner, Anna-Katharina & Haas, Willi & Rudloff, Christian & Lorenz, Florian & Wieser, Georg & Haberl, Helmut & Wiedenhofer, Dominik & Pichler, Melanie, 2024. "How experiments with superblocks in Vienna shape climate and health outcomes and interact with the urban planning regime," Journal of Transport Geography, Elsevier, vol. 116(C).
    2. Ilahi, Anugrah & Belgiawan, Prawira F. & Balac, Milos & Axhausen, Kay W., 2021. "Understanding travel and mode choice with emerging modes; a pooled SP and RP model in Greater Jakarta, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 398-422.
    3. Oyama, Yuki & Fukuda, Daisuke & Imura, Naoto & Nishinari, Katsuhiro, 2024. "Do people really want fast and precisely scheduled delivery? E-commerce customers' valuations of home delivery timing," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    4. Kosíková, Renata & Krčál, Ondřej & Peer, Stefanie, 2024. "The value of time in a repeated and one-off setup," Research in Transportation Economics, Elsevier, vol. 103(C).
    5. Peer, Stefanie & Müller, Johannes & Naqvi, Asjad & Straub, Markus, 2024. "Introducing shared, electric, autonomous vehicles (SAEVs) in sub-urban zones: Simulating the case of Vienna," Transport Policy, Elsevier, vol. 147(C), pages 232-243.
    6. Schmid, Basil & Jokubauskaite, Simona & Aschauer, Florian & Peer, Stefanie & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2019. "A pooled RP/SP mode, route and destination choice model to investigate mode and user-type effects in the value of travel time savings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 262-294.
    7. Jara-Díaz, Sergio & Candia, Diego, 2020. "A new look at the value of leisure in two-worker households," Economics of Transportation, Elsevier, vol. 24(C).
    8. Tri Basuki Joewono & Mohamed Yusuf Faridian Wirayat & Prawira Fajarindra Belgiawan & I Gusti Ayu Andani & Clint Gunawijaya, 2023. "Users’ Preferences in Selecting Transportation Modes for Leisure Trips in the Digital Era: Evidence from Bandung, Indonesia," Sustainability, MDPI, vol. 15(3), pages 1-24, January.
    9. Bhuvanachithra Chidambaram & Joachim Scheiner, 2021. "Leisure Quality among German Parents—Exploring Urbanity, Mobility, and Partner Interaction as Determinants," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    10. Aliaksandr Malokin & Giovanni Circella & Patricia L. Mokhtarian, 2021. "Do millennials value travel time differently because of productive multitasking? A revealed-preference study of Northern California commuters," Transportation, Springer, vol. 48(5), pages 2787-2823, October.
    11. Poudel, Niranjan & Singleton, Patrick A., 2024. "Willingness to pay for changes in travel time and work time: A stated choice experiment of US commuters," Research in Transportation Economics, Elsevier, vol. 103(C).
    12. Simona Jokubauskaitė & Alyssa Schneebaum, 2022. "Assessing the value of household work based on wages demanded on online platforms for substitutes," Review of Economics of the Household, Springer, vol. 20(1), pages 153-160, March.
    13. Jokubauskaitė, Simona & Hössinger, Reinhard & Aschauer, Florian & Gerike, Regine & Jara-Díaz, Sergio & Peer, Stefanie & Schmid, Basil & Axhausen, Kay W. & Leisch, Friedrich, 2019. "Advanced continuous-discrete model for joint time-use expenditure and mode choice estimation," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 397-421.

  5. Lehner, Stephan & Peer, Stefanie, 2019. "The price elasticity of parking: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 177-191.

    Cited by:

    1. Handy, Susan L & Volker, Jamey M. B. & Hosseinzade, Reyhane, 2024. "Assessing the Effectiveness of Potential Vehicle-Miles-Traveled (VMT) Mitigation Measures," Institute of Transportation Studies, Working Paper Series qt1pf307sp, Institute of Transportation Studies, UC Davis.
    2. Ogulenko, Aleksey & Benenson, Itzhak & Fulman, Nir, 2022. "The nature of the on-street parking search," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 48-68.
    3. Ola, Oreoluwa & Menapace, Luisa, 2020. "A meta-analysis understanding smallholder entry into high-value markets," World Development, Elsevier, vol. 135(C).
    4. Jun Li & Sifan Wu & Xiaoman Feng, 2021. "Optimization of On-Street Parking Charges Based on Price Elasticity of the Expected Perceived Parking Cost," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    5. Eliasson, Jonas & Börjesson, Maria, 2022. "Costs and benefits of parking charges in residential areas," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 95-109.
    6. Mahpour, Alireza & Asadi, Majid & Baghestani, Amirhossein, 2024. "Are supply and demand the main key drivers of airport parking prices? The quantitative study," Journal of Air Transport Management, Elsevier, vol. 114(C).
    7. Daniel Albalate & Albert Gragera, 2019. "“The impact of curbside parking regulations on car ownership”," IREA Working Papers 201909, University of Barcelona, Research Institute of Applied Economics, revised Jun 2019.
    8. Tian, Zhihui & Feng, Tao & Yao, Baozhen & Hu, Yan & Zhang, Jing, 2023. "Where to park an autonomous vehicle? Results of a stated choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    9. Dave, Sanjaykumar M. & Joshi, Gaurang J. & Ravinder, Kayitha & Gore, Ninad, 2019. "Data monitoring for the assessment of on-street parking demand in CBD areas of developing countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 152-171.
    10. Zhou, Xizhen & Lv, Mengqi & Ji, Yanjie & Zhang, Shuichao & Liu, Yong, 2023. "Pricing curb parking: Differentiated parking fees or cash rewards?," Transport Policy, Elsevier, vol. 142(C), pages 46-58.
    11. Francis Ostermeijer & Hans RA Koster & Leonardo Nunes & Jos van Ommeren, 2021. "Citywide parking policy and traffic: Evidence from Amsterdam," Tinbergen Institute Discussion Papers 21-015/VIII, Tinbergen Institute.
    12. Gragera, Albert & Hybel, Jesper & Madsen, Edith & Mulalic, Ismir, 2021. "A model for estimation of the demand for on-street parking," Economics of Transportation, Elsevier, vol. 28(C).
    13. Geva, Sharon & Fulman, Nir & Ben-Elia, Eran, 2022. "Getting the prices right: Drivers' cruising choices in a serious parking game," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 54-75.
    14. Premaratne Samaranayake & Upul Gunawardana & Michael Stokoe, 2023. "Kerbside Parking Assessment Using a Simulation Modelling Approach for Infrastructure Planning—A Metropolitan City Case Study," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    15. Shilpa Dogra & Nicholas O’Rourke & Michael Jenkins & Daniel Hoornweg, 2021. "Integrated Urban Mobility for Our Health and the Climate: Recommended Approaches from an Interdisciplinary Consortium," Sustainability, MDPI, vol. 13(22), pages 1-12, November.
    16. Seya, Hajime & Asaoka, Taiki & Chikaraishi, Makoto & Axhausen, Kay W., 2024. "Estimating the price elasticity of demand for off-street parking in Hiroshima City, Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    17. Ostermeijer, Francis & Koster, Hans & Nunes, Leonardo & van Ommeren, Jos, 2022. "Citywide parking policy and traffic: Evidence from Amsterdam," Journal of Urban Economics, Elsevier, vol. 128(C).
    18. Nevland, Erik A. & Gingerich, Kevin & Park, Peter Y., 2020. "A data-driven systematic approach for identifying and classifying long-haul truck parking locations," Transport Policy, Elsevier, vol. 96(C), pages 48-59.
    19. Andrés Rodríguez & Luigi dell’Olio & José Luis Moura & Borja Alonso & Rubén Cordera, 2023. "Modelling Parking Choice Behaviour Considering Alternative Availability and Systematic and Random Variations in User Tastes," Sustainability, MDPI, vol. 15(11), pages 1-18, May.

  6. Schmid, Basil & Jokubauskaite, Simona & Aschauer, Florian & Peer, Stefanie & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2019. "A pooled RP/SP mode, route and destination choice model to investigate mode and user-type effects in the value of travel time savings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 262-294.

    Cited by:

    1. Kazagli, Evanthia & de Lapparent, Matthieu, 2023. "A discrete choice modeling framework of heterogenous decision rules accounting for non-trading behavior," Journal of choice modelling, Elsevier, vol. 48(C).
    2. Ilahi, Anugrah & Belgiawan, Prawira F. & Balac, Milos & Axhausen, Kay W., 2021. "Understanding travel and mode choice with emerging modes; a pooled SP and RP model in Greater Jakarta, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 398-422.
    3. Molloy, Joseph & Becker, Felix & Schmid, Basil & Axhausen, Kay W., 2021. "mixl: An open-source R package for estimating complex choice models on large datasets," Journal of choice modelling, Elsevier, vol. 39(C).
    4. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot & Jang, Sunghoon, 2024. "Alternate closed-form weibit-based model for assessing travel choice with an oddball alternative," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    5. Schmid, Basil & Molloy, Joseph & Peer, Stefanie & Jokubauskaite, Simona & Aschauer, Florian & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2021. "The value of travel time savings and the value of leisure in Zurich: Estimation, decomposition and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 186-215.
    6. Jara-Diaz, Sergio, 2020. "Transport and time use: The values of leisure, work and travel," Transport Policy, Elsevier, vol. 86(C), pages 7-13.
    7. Anna-Theresa Renner & Dieter Pennerstorfer, 2020. "Modeling inter-regional patient mobility: Does distance go far enough?," Economics working papers 2020-04, Department of Economics, Johannes Kepler University Linz, Austria.
    8. Peer, Stefanie & Müller, Johannes & Naqvi, Asjad & Straub, Markus, 2024. "Introducing shared, electric, autonomous vehicles (SAEVs) in sub-urban zones: Simulating the case of Vienna," Transport Policy, Elsevier, vol. 147(C), pages 232-243.
    9. Marra, Alessio Daniele & Corman, Francesco, 2020. "Determining an efficient and precise choice set for public transport based on tracking data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 168-186.
    10. Ma, Jiaxin & Chen, Xumei & Zhang, Xiaomei & Zhang, Yixin & Yu, Lei, 2024. "Exploring the willingness to pay for high-occupancy toll lanes under conditions of low familiarity," Transport Policy, Elsevier, vol. 154(C), pages 142-156.
    11. Rossetti, Tomás & Broaddus, Andrea & Ruhl, Melissa & Daziano, Ricardo, 2023. "Commuter preferences for a first-mile/last-mile microtransit service in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    12. Chen, Siyuan & Liu, Xin & Lyu, Cheng & Vlacic, Ljubo & Tang, Tianli & Liu, Zhiyuan, 2023. "A holistic data-driven framework for developing a complete profile of bus passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    13. Reinhard Hössinger & Florian Aschauer & Sergio Jara-Díaz & Simona Jokubauskaite & Basil Schmid & Stefanie Peer & Kay W. Axhausen & Regine Gerike, 2020. "A joint time-assignment and expenditure-allocation model: value of leisure and value of time assigned to travel for specific population segments," Transportation, Springer, vol. 47(3), pages 1439-1475, June.
    14. Milos Balac & Sebastian Hörl & Basil Schmid, 2024. "Discrete choice modeling with anonymized data," Transportation, Springer, vol. 51(2), pages 351-370, April.
    15. Andani, I Gusti Ayu & La Paix Puello, Lissy & Geurs, Karst, 2021. "Modelling effects of changes in travel time and costs of toll road usage on choices for residential location, route and travel mode across population segments in the Jakarta-Bandung region, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 81-102.
    16. Aliaksandr Malokin & Giovanni Circella & Patricia L. Mokhtarian, 2021. "Do millennials value travel time differently because of productive multitasking? A revealed-preference study of Northern California commuters," Transportation, Springer, vol. 48(5), pages 2787-2823, October.
    17. Basil Schmid & Milos Balac & Kay W. Axhausen, 2019. "Post-Car World: data collection methods and response behavior in a multi-stage travel survey," Transportation, Springer, vol. 46(2), pages 425-492, April.
    18. Rossolov, Oleksandr & Susilo, Yusak O., 2024. "Are consumers ready to pay extra for crowd-shipping e-groceries and why? A hybrid choice analysis for developing economies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    19. Jokubauskaitė, Simona & Hössinger, Reinhard & Aschauer, Florian & Gerike, Regine & Jara-Díaz, Sergio & Peer, Stefanie & Schmid, Basil & Axhausen, Kay W. & Leisch, Friedrich, 2019. "Advanced continuous-discrete model for joint time-use expenditure and mode choice estimation," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 397-421.

  7. Krčál, Ondřej & Peer, Stefanie & Staněk, Rostislav & Karlínová, Bára, 2019. "Real consequences matter: Why hypothetical biases in the valuation of time persist even in controlled lab experiments," Economics of Transportation, Elsevier, vol. 20(C).
    See citations under working paper version above.
  8. Jokubauskaitė, Simona & Hössinger, Reinhard & Aschauer, Florian & Gerike, Regine & Jara-Díaz, Sergio & Peer, Stefanie & Schmid, Basil & Axhausen, Kay W. & Leisch, Friedrich, 2019. "Advanced continuous-discrete model for joint time-use expenditure and mode choice estimation," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 397-421.

    Cited by:

    1. Villena-Sanchez, Jessica & Boschmann, E. Eric & Avila-Forcada, Sara, 2022. "Daily travel behaviors and transport mode choice of older adults in Mexico City," Journal of Transport Geography, Elsevier, vol. 104(C).
    2. Schmid, Basil & Molloy, Joseph & Peer, Stefanie & Jokubauskaite, Simona & Aschauer, Florian & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2021. "The value of travel time savings and the value of leisure in Zurich: Estimation, decomposition and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 186-215.
    3. Jara-Diaz, Sergio, 2020. "Transport and time use: The values of leisure, work and travel," Transport Policy, Elsevier, vol. 86(C), pages 7-13.
    4. Peer, Stefanie & Müller, Johannes & Naqvi, Asjad & Straub, Markus, 2024. "Introducing shared, electric, autonomous vehicles (SAEVs) in sub-urban zones: Simulating the case of Vienna," Transport Policy, Elsevier, vol. 147(C), pages 232-243.
    5. Hirte, Georg & Laes, Renée & Gerike, Regine, 2023. "Working from self-driving cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    6. Jara-Díaz, Sergio & Candia, Diego, 2020. "A new look at the value of leisure in two-worker households," Economics of Transportation, Elsevier, vol. 24(C).
    7. Simona Jokubauskaitė & Reinhard Hössinger & Sergio Jara-Díaz & Stefanie Peer & Alyssa Schneebaum & Basil Schmid & Florian Aschauer & Regine Gerike & Kay W. Axhausen & Friedrich Leisch, 2022. "The role of unpaid domestic work in explaining the gender gap in the (monetary) value of leisure," Transportation, Springer, vol. 49(6), pages 1599-1625, December.
    8. Poudel, Niranjan & Singleton, Patrick A., 2024. "Willingness to pay for changes in travel time and work time: A stated choice experiment of US commuters," Research in Transportation Economics, Elsevier, vol. 103(C).
    9. Balbontin, Camila & Hensher, David A. & Beck, Matthew J., 2024. "The influence of working from home and underlying attitudes on the number of commuting and non-commuting trips by workers during 2020 and 2021 pre- and post-lockdown in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    10. Hössinger, Reinhard & Peer, Stefanie & Juschten, Maria, 2023. "Give citizens a task: An innovative tool to compose policy bundles that reach the climate goal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    11. Hirte, Georg & Laes, Renée, 2022. "Working from self-driving cars," CEPIE Working Papers 01/22, Technische Universität Dresden, Center of Public and International Economics (CEPIE).

  9. Eric Kroes & Paul Koster & Stefanie Peer, 2018. "A practical method to estimate the benefits of improved road network reliability: an application to departing air passengers," Transportation, Springer, vol. 45(5), pages 1433-1448, September.

    Cited by:

    1. Teppei Kato & Kenetsu Uchida & William H. K. Lam & Agachai Sumalee, 2021. "Estimation of the value of travel time and of travel time reliability for heterogeneous drivers in a road network," Transportation, Springer, vol. 48(4), pages 1639-1670, August.

  10. Peer, Stefanie & Börjesson, Maria, 2018. "Temporal framing of stated preference experiments: does it affect valuations?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 319-333.

    Cited by:

    1. Kosíková, Renata & Krčál, Ondřej & Peer, Stefanie, 2024. "The value of time in a repeated and one-off setup," Research in Transportation Economics, Elsevier, vol. 103(C).
    2. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    3. Ondřej Krčál & Stefanie Peer & Rostislav Staněk, 2021. "Can time-inconsistent preferences explain hypothetical biases?," MUNI ECON Working Papers 2021-01, Masaryk University, revised Feb 2023.
    4. Stephane Hess & Andrew Daly & Maria Börjesson, 2020. "A critical appraisal of the use of simple time-money trade-offs for appraisal value of travel time measures," Transportation, Springer, vol. 47(3), pages 1541-1570, June.

  11. Peer, Stefanie & Knockaert, Jasper & Verhoef, Erik T., 2016. "Train commuters’ scheduling preferences: Evidence from a large-scale peak avoidance experiment," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 314-333.
    See citations under working paper version above.
  12. Koster, Paul & Peer, Stefanie & Dekker, Thijs, 2015. "Memory, expectation formation and scheduling choices," Economics of Transportation, Elsevier, vol. 4(4), pages 256-265.
    See citations under working paper version above.
  13. Stefanie Peer & Erik Verhoef & Jasper Knockaert & Paul Koster & Yin‐Yen Tseng, 2015. "Long‐Run Versus Short‐Run Perspectives On Consumer Scheduling: Evidence From A Revealed‐Preference Experiment Among Peak‐Hour Road Commuters," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(1), pages 303-323, February.

    Cited by:

    1. Jinwon Kim & Jucheol Moon, 2022. "Congestion Costs and Scheduling Preferences of Car Commuters in California: Estimates Using Big Data," Working Papers 2201, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    2. Schmid, Basil & Molloy, Joseph & Peer, Stefanie & Jokubauskaite, Simona & Aschauer, Florian & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2021. "The value of travel time savings and the value of leisure in Zurich: Estimation, decomposition and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 186-215.

  14. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Verhoef, Erik T., 2014. "Over-reporting vs. overreacting: Commuters’ perceptions of travel times," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 476-494.
    See citations under working paper version above.
  15. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Tseng, Yin-Yen & Verhoef, Erik T., 2013. "Door-to-door travel times in RP departure time choice models: An approximation method using GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 134-150.

    Cited by:

    1. Bwambale, Andrew & Choudhury, Charisma F. & Hess, Stephane, 2019. "Modelling departure time choice using mobile phone data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 424-439.
    2. Li, Zheng & Hensher, David A. & Rose, John M., 2010. "Willingness to pay for travel time reliability in passenger transport: A review and some new empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 384-403, May.
    3. Zhao, Yun & Yu, Hongbo, 2018. "A door-to-door travel time approach for evaluating modal competition of intercity travel: A focus on the proposed Dallas-Houston HSR route," Journal of Transport Geography, Elsevier, vol. 72(C), pages 13-22.
    4. Jean Dubé & Diego Legros & Marius Thériault & François Des Rosiers, 2014. "A Spatial Difference-in-Differences Estimator to Evaluate the Effect of Change in Public Mass Transit Systems on House Prices," Post-Print halshs-01227236, HAL.
    5. Paul Koster & Hans Koster, 2013. "Analysing Heterogeneity in the Value of Travel Time and Reliability: A Semiparametric Estimation Approach," ERSA conference papers ersa13p1032, European Regional Science Association.
    6. Wong, Wai & Wong, S.C., 2015. "Systematic bias in transport model calibration arising from the variability of linear data projection," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 1-18.
    7. Ondřej Krčál & Rostislav Staněk & Bára Karlínová & Stefanie Peer, 2019. "Real consequences matters: why hypothetical biases in the valuation of time persist even in controlled lab experiments," MUNI ECON Working Papers 2019-03, Masaryk University, revised Feb 2023.
    8. Stefanie Peer & Jasper Knockaert & Paul Koster & Erik Verhoef, 2013. "Overreporting vs. Overreacting: Commuters' Perceptions of Travel Times," Tinbergen Institute Discussion Papers 13-123/VIII, Tinbergen Institute, revised 25 Aug 2013.
    9. Stefanie Peer & Erik Verhoef & Jasper Knockaert & Paul Koster & Yin-Yen Tseng, 2011. "Long-Run vs. Short-Run Perspectives on Consumer Scheduling: Evidence from a Revealed-Preference Experiment among Peak-Hour Road Commuters," Tinbergen Institute Discussion Papers 11-181/3, Tinbergen Institute, revised 25 Aug 2014.
    10. Stefanie Peer & Jasper Knockaert & Erik Verhoef, 2015. "Train Commuters' Scheduling Preferences: Evidence from a Large-Scale Peak Avoidance Experiment," Tinbergen Institute Discussion Papers 15-078/VIII, Tinbergen Institute.
    11. Lizana, Pedro & Ortúzar, Juan de Dios & Arellana, Julián & Rizzi, Luis I., 2021. "Forecasting with a joint mode/time-of-day choice model based on combined RP and SC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 302-316.

  16. Peer, Stefanie & Verhoef, Erik T., 2013. "Equilibrium at a bottleneck when long-run and short-run scheduling preferences diverge," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 12-27. See citations under working paper version above.

Chapters

    Sorry, no citations of chapters recorded.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.