IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-03350-5.html
   My bibliography  Save this article

Economic impact of ACES trends on the automotive value chain: a forecast exploratory study of the Chinese automotive industry in 2030

Author

Listed:
  • Yu Chen

    (Guangdong Industry Polytechnic University)

  • Di Zhu

    (China Electronic Product Reliability and Environmental Testing Research Institute)

Abstract

In the context of green transportation, the automotive industry is undergoing a revolution in autonomous, connected, electric, and shared (ACES) vehicles. ACES vehicles have a relatively short history and there is limited relevant market data available. Therefore, quantitative research on the economic impact of ACES trends remains a new area of exploration. The purpose of the paper is to explore the economic impact of ACES trends on the automotive value chain, with a specific focus on the production and aftermarket segments. In the paper, a detailed quantitative analysis of the installation scale and the market size of Chinese automotive production as well as the income changes of Chinese automotive aftermarket in 2030 is conducted. The findings show that the new markets for power batteries, electric powertrains, sensors, in-vehicle software and chips are created, thereby delivering more value to the business. While the ACES trends are expected to decrease the average aftermarket income per vehicle, the growth of the vehicle stock suggests significant potential for the development of the automotive aftermarket in 2030. Our research contributes by offering a business perspective on the impact of ACES trends. The quantitative insights presented are timely and crucial for all the stakeholders along the value chain, enabling them to adapt and thrive in the dynamic automotive landscape and align their strategies with the transformative ACES trends.

Suggested Citation

  • Yu Chen & Di Zhu, 2024. "Economic impact of ACES trends on the automotive value chain: a forecast exploratory study of the Chinese automotive industry in 2030," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03350-5
    DOI: 10.1057/s41599-024-03350-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-03350-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-03350-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu Kuang & Fuquan Zhao & Han Hao & Zongwei Liu, 2018. "Intelligent connected vehicles: the industrial practices and impacts on automotive value-chains in China," Asia Pacific Business Review, Taylor & Francis Journals, vol. 24(1), pages 1-21, January.
    2. Pütz, Fabian & Murphy, Finbarr & Mullins, Martin & O'Malley, Lisa, 2019. "Connected automated vehicles and insurance: Analysing future market-structure from a business ecosystem perspective," Technology in Society, Elsevier, vol. 59(C).
    3. Li, Lin & Dababneh, Fadwa & Zhao, Jing, 2018. "Cost-effective supply chain for electric vehicle battery remanufacturing," Applied Energy, Elsevier, vol. 226(C), pages 277-286.
    4. Martin Adler & Stefanie Peer & Tanja Sinozic, 2019. "Autonomous, Connected, Electric Shared vehicles (ACES) and public finance: an explorative analysis," Tinbergen Institute Discussion Papers 19-005/VIII, Tinbergen Institute.
    5. Ma, Ke & Wang, Hao & Ruan, Tiancheng, 2021. "Analysis of road capacity and pollutant emissions: Impacts of Connected and automated vehicle platoons on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    6. Alonso Raposo, María & Grosso, Monica & Mourtzouchou, Andromachi & Krause, Jette & Duboz, Amandine & Ciuffo, Biagio, 2022. "Economic implications of a connected and automated mobility in Europe," Research in Transportation Economics, Elsevier, vol. 92(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Sovacool, Benjamin K. & Daniels, Chux & AbdulRafiu, Abbas, 2022. "Transitioning to electrified, automated and shared mobility in an African context: A comparative review of Johannesburg, Kigali, Lagos and Nairobi," Journal of Transport Geography, Elsevier, vol. 98(C).
    3. Nasrollahi, Maedeh & Ghadikolaei, Abdolhamid Safaei & Ghasemi, Rohollah & Sheykhizadeh, Morteza & Abdi, Mehdi, 2022. "Identification and prioritization of connected vehicle technologies for sustainable development in Iran," Technology in Society, Elsevier, vol. 68(C).
    4. Liu, Huaqiang & Ahmad, Shakeel & Shi, Yu & Zhao, Jiyun, 2021. "A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling," Energy, Elsevier, vol. 231(C).
    5. Erick C. Jones, 2024. "Lithium Supply Chain Optimization: A Global Analysis of Critical Minerals for Batteries," Energies, MDPI, vol. 17(11), pages 1-31, May.
    6. Wu, Yuanyuan & Wang, David Z.W. & Zhu, Feng, 2022. "Influence of CAVs platooning on intersection capacity under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    7. Gao, Yang & Zhang, Jialiang & Chen, Yongqiang & Wang, Ling & Wang, Chengyan, 2023. "Graphite regenerating from retired (LFP) lithium-ion battery: Phase transformation mechanism of impurities in low-temperature sulfation roasting process," Renewable Energy, Elsevier, vol. 204(C), pages 290-299.
    8. Zhujun Wang & Qin Su & Bi Wang & Jie Wang, 2023. "Improving Lithium-Ion Battery Supply Chain Information Security by User Behavior Monitoring Algorithm Incorporated in Cloud Enterprise Resource Planning," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    9. Doyeon Lee & Keunhwan Kim, 2021. "A Collaborative Trans-Regional R&D Strategy for the South Korea Green New Deal to Achieve Future Mobility," Sustainability, MDPI, vol. 13(15), pages 1-30, August.
    10. Lopez, Neil Stephen & Tria, Lew Andrew & Tayo, Leo Allen & Cruzate, Rovinna Janel & Oppus, Carlos & Cabacungan, Paul & Isla, Igmedio & Ansay, Arjun & Garcia, Teodinis & Cabarrubias-Dela Cruz, Kevien &, 2021. "Societal cost-benefit analysis of electric vehicles in the Philippines with the inclusion of impacts to balance of payments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Ieva Meidute-Kavaliauskiene & Figen Yıldırım & Shahryar Ghorbani & Renata Činčikaitė, 2022. "The Design of a Multi-Period and Multi-Echelon Perishable Goods Supply Network under Uncertainty," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    12. Ibham Veza & Mohd Syaifuddin & Muhammad Idris & Safarudin Gazali Herawan & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah, 2024. "Electric Vehicle (EV) Review: Bibliometric Analysis of Electric Vehicle Trend, Policy, Lithium-Ion Battery, Battery Management, Charging Infrastructure, Smart Charging, and Electric Vehicle-to-Everyth," Energies, MDPI, vol. 17(15), pages 1-43, July.
    13. Jiang, Yanqun & Ding, Zhongjun & Zhou, Jun & Wu, Peng & Chen, Bokui, 2022. "Estimation of traffic emissions in a polycentric urban city based on a macroscopic approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    14. Papaix, Claire & Eranova, Mariya & Zhou, Li, 2023. "Shared mobility research: Looking through a paradox lens," Transport Policy, Elsevier, vol. 133(C), pages 156-167.
    15. Nguyen-Tien, Viet & Dai, Qiang & Harper, Gavin D.J. & Anderson, Paul A. & Elliott, Robert J.R., 2022. "Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy," Applied Energy, Elsevier, vol. 321(C).
    16. Zhang, Huiming & Huang, Jiying & Hu, Ruohan & Zhou, Dequn & Khan, Haroon ur Rashid & Ma, Changxian, 2020. "Echelon utilization of waste power batteries in new energy vehicles: Review of Chinese policies," Energy, Elsevier, vol. 206(C).
    17. Bingqiang Li & Lei Huang, 2019. "The Effect of Incremental Innovation and Disruptive Innovation on the Sustainable Development of Manufacturing in China," SAGE Open, , vol. 9(1), pages 21582440198, February.
    18. Lander, Laura & Tagnon, Chris & Nguyen-Tien, Viet & Kendrick, Emma & Elliott, Robert J.R. & Abbott, Andrew P. & Edge, Jacqueline S. & Offer, Gregory J., 2023. "Breaking it down: A techno-economic assessment of the impact of battery pack design on disassembly costs," Applied Energy, Elsevier, vol. 331(C).
    19. Cao, Jidi & Chen, Xin & Qiu, Rui & Hou, Shuhua, 2021. "Electric vehicle industry sustainable development with a stakeholder engagement system," Technology in Society, Elsevier, vol. 67(C).
    20. Dong, Jiakuan & Gao, Zhijun & Luo, Dongyu & Wang, Jiangfeng & Chen, Lei, 2024. "Impact of beyond-line-of-sight connectivity on the capacity and stability of mixed traffic flow: An analytical and numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03350-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.