IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v46y2012i10p1528-1540.html
   My bibliography  Save this article

Modeling travel time reliability of freeways using risk assessment techniques

Author

Listed:
  • Tu, Huizhao
  • Li, Hao
  • van Lint, Hans
  • van Zuylen, Henk

Abstract

Travel time reliability is considered to be one of the key indicators for the performance of transport systems and is measured in various ways. This paper synthesizes both reliability concepts: traffic breakdown, the indicator of the instability of travel times, is treated as the risk, whereas travel time variability, the indicator of the uncertainty of travel times, is considered as the consequence of this risk. An analytical formula, using risk assessment technique, explicitly expresses the cost of travel time unreliability as the sum of the products of the consequences (i.e. variability) and the corresponding probabilities of breakdown. It provides a novel measure of travel time reliability and is applicable in network performance evaluations. An empirical example based on a large dataset of freeway traffic flow data from loop detectors shows that the developed travel time reliability measure is both intuitively logical and consistent.

Suggested Citation

  • Tu, Huizhao & Li, Hao & van Lint, Hans & van Zuylen, Henk, 2012. "Modeling travel time reliability of freeways using risk assessment techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1528-1540.
  • Handle: RePEc:eee:transa:v:46:y:2012:i:10:p:1528-1540
    DOI: 10.1016/j.tra.2012.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856412001206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2012.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthias Sweet & Mengke Chen, 2011. "Does regional travel time unreliability influence mode choice?," Transportation, Springer, vol. 38(4), pages 625-642, July.
    2. Brownstone, David & Small, Kenneth A., 2005. "Valuing time and reliability: assessing the evidence from road pricing demonstrations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 279-293, May.
    3. Stefanie Peer & Carl Koopmans & Erik T. Verhoef, 2010. "Predicting Travel Time Variability for Cost-Benefit Analysis," Tinbergen Institute Discussion Papers 10-071/3, Tinbergen Institute.
    4. Clark, Stephen & Watling, David, 2005. "Modelling network travel time reliability under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 119-140, February.
    5. van Lint, J.W.C. & van Zuylen, Henk J. & Tu, H., 2008. "Travel time unreliability on freeways: Why measures based on variance tell only half the story," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 258-277, January.
    6. Fosgerau, Mogens & Karlström, Anders, 2010. "The value of reliability," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 38-49, January.
    7. Daganzo, C. F. & Cassidy, M. J. & Bertini, R. L., 1999. "Possible explanations of phase transitions in highway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(5), pages 365-379, June.
    8. Bell, Michael G. H. & Cassir, Chris, 2002. "Risk-averse user equilibrium traffic assignment: an application of game theory," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 671-681, September.
    9. Tamasi, Galileo & Demichela, Micaela, 2011. "Risk assessment techniques for civil aviation security," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 892-899.
    10. Bates, John & Polak, John & Jones, Peter & Cook, Andrew, 0. "The valuation of reliability for personal travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 191-229, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hao & Gao, Kun & Tu, Huizhao, 2017. "Variations in mode-specific valuations of travel time reliability and in-vehicle crowding: Implications for demand estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 250-263.
    2. Li, Hao & Tu, Huizhao & Hensher, David A., 2016. "Integrating the mean–variance and scheduling approaches to allow for schedule delay and trip time variability under uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 151-163.
    3. Sjoerd van der Spoel & Chintan Amrit & Jos van Hillegersberg, 2017. "Predictive analytics for truck arrival time estimation: a field study at a European distribution centre," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5062-5078, September.
    4. Gore, Ninad & Arkatkar, Shriniwas & Joshi, Gaurang & Antoniou, Constantinos, 2023. "Developing modified congestion index and congestion-based level of service," Transport Policy, Elsevier, vol. 131(C), pages 97-119.
    5. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    6. Li, Hao & Yu, Lu & Chen, Yu & Tu, Huizhao & Zhang, Jun, 2023. "Uncertainty of available range in explaining the charging choice behavior of BEV users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    7. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    8. Kathrin Goldmann & Gernot Sieg, 2020. "Quantifying the phantom jam externality: The case of an Autobahn section in Germany," Working Papers 30, Institute of Transport Economics, University of Muenster.
    9. Can Chen & Tienan Li & Jian Sun & Feng Chen, 2016. "Hotspot Identification for Shanghai Expressways Using the Quantitative Risk Assessment Method," IJERPH, MDPI, vol. 14(1), pages 1-15, December.
    10. Gore, Ninad & Arkatkar, Shriniwas & Joshi, Gaurang & Pulugurtha, Srinivas S., 2023. "A hazard-based model to derive travel time under congested conditions," Transport Policy, Elsevier, vol. 138(C), pages 1-16.
    11. Cheng, Qixiu & Liu, Zhiyuan & Lu, Jiawei & List, George & Liu, Pan & Zhou, Xuesong Simon, 2024. "Using frequency domain analysis to elucidate travel time reliability along congested freeway corridors," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    12. Krier, Betty & Liu, Chia-Mei & McNamara, Brian & Sharpe, Jerrod, 2014. "Individual freight effects, capacity utilization, and Amtrak service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 163-175.
    13. Changyin Dong & Hao Wang & Quan Chen & Daiheng Ni & Ye Li, 2019. "Simulation-Based Assessment of Multilane Separate Freeways at Toll Station Area: A Case Study from Huludao Toll Station on Shenshan Freeway," Sustainability, MDPI, vol. 11(11), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    2. Koster, Paul & Kroes, Eric & Verhoef, Erik, 2011. "Travel time variability and airport accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1545-1559.
    3. Wang, Qian & Sundberg, Marcus & Karlström, Anders, 2013. "Scheduling choices under rank dependent utility maximization," Working papers in Transport Economics 2013:16, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    4. Sjoerd van der Spoel & Chintan Amrit & Jos van Hillegersberg, 2017. "Predictive analytics for truck arrival time estimation: a field study at a European distribution centre," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5062-5078, September.
    5. Chen, Anthony & Zhou, Zhong, 2010. "The [alpha]-reliable mean-excess traffic equilibrium model with stochastic travel times," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 493-513, May.
    6. Raux, Charles & Souche, Stéphanie & Pons, Damien, 2012. "The efficiency of congestion charging: Some lessons from cost–benefit analyses," Research in Transportation Economics, Elsevier, vol. 36(1), pages 85-92.
    7. Rajesh S. Prabhu Gaonkar & V. Mariappan, 2020. "Transportation time reliability appraisal in maritime context," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 736-746, June.
    8. Rajesh S. Prabhu Gaonkar & V. Mariappan, 0. "Transportation time reliability appraisal in maritime context," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-11.
    9. Teppei Kato & Kenetsu Uchida & William H. K. Lam & Agachai Sumalee, 2021. "Estimation of the value of travel time and of travel time reliability for heterogeneous drivers in a road network," Transportation, Springer, vol. 48(4), pages 1639-1670, August.
    10. Fu, Jianhua & Zhang, Yongqing, 2020. "Valuation of travel time reliability: Considering the traveler's adaptive expectation with an indifference band on daily trip duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 337-353.
    11. Chen, Anthony & Zhou, Zhong & Lam, William H.K., 2011. "Modeling stochastic perception error in the mean-excess traffic equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1619-1640.
    12. Alejandro Tirachini & David Hensher & Michiel Bliemer, 2014. "Accounting for travel time variability in the optimal pricing of cars and buses," Transportation, Springer, vol. 41(5), pages 947-971, September.
    13. Xiao, Yu & Fukuda, Daisuke, 2015. "On the cost of misperceived travel time variability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 96-112.
    14. Soriguera, Francesc, 2014. "On the value of highway travel time information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 294-310.
    15. Zhaoqi Zang & Richard Batley & Xiangdong Xu & David Z. W. Wang, 2022. "On the value of distribution tail in the valuation of travel time variability," Papers 2207.06293, arXiv.org, revised Dec 2023.
    16. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    17. Engelson, Leonid & Fosgerau, Mogens, 2011. "Additive measures of travel time variability," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1560-1571.
    18. Dixit, Vinayak V. & Harb, Rami C. & Martínez-Correa, Jimmy & Rutström, Elisabet E., 2015. "Measuring risk aversion to guide transportation policy: Contexts, incentives, and respondents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 15-34.
    19. Fosgerau, Mogens & Fukuda, Daisuke, 2010. "Valuing travel time variability: Characteristics of the travel time distribution on an urban road," MPRA Paper 24330, University Library of Munich, Germany.
    20. Paul Koster & Erik T. Verhoef, 2012. "A Rank-dependent Scheduling Model," Journal of Transport Economics and Policy, University of Bath, vol. 46(1), pages 123-138, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:46:y:2012:i:10:p:1528-1540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.