IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v173y2023ics096585642300112x.html
   My bibliography  Save this article

A holistic data-driven framework for developing a complete profile of bus passengers

Author

Listed:
  • Chen, Siyuan
  • Liu, Xin
  • Lyu, Cheng
  • Vlacic, Ljubo
  • Tang, Tianli
  • Liu, Zhiyuan

Abstract

User profiles, considered as one of the fundamental inputs of recommendation systems and customized services, can be rationally applied in the public transport domain to represent passengers’ characteristics and behavioral preferences. A user profile of a bus passenger, termed as a bus passenger profile (BPP), is an assortment of labels containing passengers’ travel features. This paper proposes a data-driven framework for developing BPP so as to provide guidance on how to create and estimate user profiles for bus passengers based on smart card data. The proposed method comprises three steps. (i) Data preprocessing aimed at extracting key information and preparing passenger profiling. (ii) A tag system aimed at storing the estimated travel features of passengers. (iii) Knowledge graphs aimed at connecting various BPP with semantic edges for practical application of prior knowledge in downstream tasks. The developed framework is implemented in a case study of the Beijing bus system. Deployment of the developed framework has demonstrated that it can satisfactorily develop BPP, while prior knowledge from the BPP-based knowledge graphs can benefit downstream tasks.

Suggested Citation

  • Chen, Siyuan & Liu, Xin & Lyu, Cheng & Vlacic, Ljubo & Tang, Tianli & Liu, Zhiyuan, 2023. "A holistic data-driven framework for developing a complete profile of bus passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:transa:v:173:y:2023:i:c:s096585642300112x
    DOI: 10.1016/j.tra.2023.103692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585642300112X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmid, Basil & Jokubauskaite, Simona & Aschauer, Florian & Peer, Stefanie & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2019. "A pooled RP/SP mode, route and destination choice model to investigate mode and user-type effects in the value of travel time savings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 262-294.
    2. Yang, Jiawen & Quan, Jige & Yan, Bin & He, Canfei, 2016. "Urban rail investment and transit-oriented development in Beijing: Can it reach a higher potential?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 140-150.
    3. Itani, Ibrahim & Cassidy, Michael J. & Daganzo, Carlos, 2021. "Synergies of combining demand- and supply-side measures to manage congested streets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 172-179.
    4. Ed Manley & Chen Zhong & Michael Batty, 2018. "Spatiotemporal variation in travel regularity through transit user profiling," Transportation, Springer, vol. 45(3), pages 703-732, May.
    5. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.
    6. García-Albertos, Pedro & Picornell, Miguel & Salas-Olmedo, María Henar & Gutiérrez, Javier, 2019. "Exploring the potential of mobile phone records and online route planners for dynamic accessibility analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 294-307.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Tianli & Gu, Ziyuan & Yang, Yuanxuan & Sun, Haobo & Chen, Siyuan & Chen, Yuting, 2024. "A data-driven framework for natural feature profile of public transport ridership: Insights from Suzhou and Lianyungang, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazagli, Evanthia & de Lapparent, Matthieu, 2023. "A discrete choice modeling framework of heterogenous decision rules accounting for non-trading behavior," Journal of choice modelling, Elsevier, vol. 48(C).
    2. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Ma, Jiaxin & Chen, Xumei & Zhang, Xiaomei & Zhang, Yixin & Yu, Lei, 2024. "Exploring the willingness to pay for high-occupancy toll lanes under conditions of low familiarity," Transport Policy, Elsevier, vol. 154(C), pages 142-156.
    4. Zhao, Yingrui & Hu, Songhua & Zhang, Ming, 2024. "Evaluating equitable Transit-Oriented development (TOD) via the Node-Place-People model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    5. Peng, Yisheng & Liu, Jiahui & Li, Fangyou & Cui, Jianqiang & Lu, Yi & Yang, Linchuan, 2024. "Resilience of ride-hailing services in response to air pollution and its association with built-environment and socioeconomic characteristics," Journal of Transport Geography, Elsevier, vol. 120(C).
    6. Ma, Xinwei & Tian, Xiaolin & Jin, Zejin & Cui, Hongjun & Ji, Yanjie & Cheng, Long, 2024. "Evaluation and determinants of metro users' regularity: Insights from transit one-card data," Journal of Transport Geography, Elsevier, vol. 118(C).
    7. Ying Liang & Wei Song & Xiaofeng Dong, 2021. "Evaluating the Space Use of Large Railway Hub Station Areas in Beijing toward Integrated Station-City Development," Land, MDPI, vol. 10(11), pages 1-22, November.
    8. Yang, Jiawen & Su, Pinren & Cao, Jason, 2020. "On the importance of Shenzhen metro transit to land development and threshold effect," Transport Policy, Elsevier, vol. 99(C), pages 1-11.
    9. Aliaksandr Malokin & Giovanni Circella & Patricia L. Mokhtarian, 2021. "Do millennials value travel time differently because of productive multitasking? A revealed-preference study of Northern California commuters," Transportation, Springer, vol. 48(5), pages 2787-2823, October.
    10. Paul Nailly & Etienne Côme & Latifa Oukhellou & Allou Samé & Jacques Ferriere & Yasmine Merad-Boudia, 2024. "Multivariate count time series segmentation with “sums and shares” and Poisson lognormal mixture models: a comparative study using pedestrian flows within a multimodal transport hub," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 455-491, June.
    11. Anna-Theresa Renner & Dieter Pennerstorfer, 2020. "Modeling inter-regional patient mobility: Does distance go far enough?," Economics working papers 2020-04, Department of Economics, Johannes Kepler University Linz, Austria.
    12. Feng, Xuan & Lin, Qinping & Jia, Ning & Tian, Junfang, 2024. "The actual impact of ride-splitting: An empirical study based on large-scale GPS data," Transport Policy, Elsevier, vol. 147(C), pages 94-112.
    13. Li, Jianyi & Huang, Hao, 2020. "Effects of transit-oriented development (TOD) on housing prices: A case study in Wuhan, China," Research in Transportation Economics, Elsevier, vol. 80(C).
    14. Sławomir Goliszek, 2021. "GIS tools and programming languages for creating models of public and private transport potential accessibility in Szczecin, Poland," Journal of Geographical Systems, Springer, vol. 23(1), pages 115-137, January.
    15. Li, Zekun & Han, Zixuan & Xin, Jing & Luo, Xin & Su, Shiliang & Weng, Min, 2019. "Transit oriented development among metro station areas in Shanghai, China: Variations, typology, optimization and implications for land use planning," Land Use Policy, Elsevier, vol. 82(C), pages 269-282.
    16. Shiwen Zhang & Yan Wang & Chengrong Li & Yang Wu & Yuhang Yin & Chao Zhang, 2023. "The Response of Rocky Desertification to the Development of Road Networks in Karst Ecologically Fragile Areas," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    17. Zhao, Pengjun & Yang, Hanzi & Kong, Lu & Liu, Yunshu & Liu, Di, 2018. "Disintegration of metro and land development in transition China: A dynamic analysis in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 290-307.
    18. Rossetti, Tomás & Broaddus, Andrea & Ruhl, Melissa & Daziano, Ricardo, 2023. "Commuter preferences for a first-mile/last-mile microtransit service in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    19. Jiao, Hongzan & Huang, Shibiao & Zhou, Yu, 2023. "Understanding the land use function of station areas based on spatiotemporal similarity in rail transit ridership: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 109(C).
    20. Rossolov, Oleksandr & Susilo, Yusak O., 2024. "Are consumers ready to pay extra for crowd-shipping e-groceries and why? A hybrid choice analysis for developing economies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:173:y:2023:i:c:s096585642300112x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.