IDEAS home Printed from https://ideas.repec.org/p/hhs/ctswps/2018_003.html
   My bibliography  Save this paper

Quantifying errors in travel time and cost by latent variables

Author

Listed:
  • Varela, Juan Manuel Lorenzo

    (CTS - Centre for Transport Studies Stockholm (KTH and VTI))

  • Börjesson, Maria

    (CTS - Centre for Transport Studies Stockholm (KTH and VTI))

  • Daly, Andrew

    (ITS, Leeds)

Abstract

Travel time and travel cost are key variables for explaining travel behaviour and deriving the value of time. However, a general problem in transport modelling is that these variables are subject to measurement errors in transport network models. In this paper we show how to assess the magnitude of the measurement errors in travel time and travel cost by latent variables, in a large-scale travel demand model. The case study for Stockholm commuters shows that assuming multiplicative measurement errors for travel time and cost result in a better fit than additive ones; however, when measurement errors are modelled, the estimated time and cost parameters are robust to the modelling assumptions. Moreover, our results suggest that measurement errors in our dataset are larger for the travel cost than for the travel time, and that measurement errors are larger in self-reported travel time than software-calculated travel time for car-driver and car-passenger, and of similar magnitude for public transport. Among self-reported travel times, car-passenger has the largest errors, followed by car-driver and public transport, and for the software-calculated times, public transport exhibits larger errors than car. These errors, if not corrected, lead to biases in measures derived from the models, such as elasticity and values of travel time.

Suggested Citation

  • Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Working papers in Transport Economics 2018:3, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
  • Handle: RePEc:hhs:ctswps:2018_003
    as

    Download full text from publisher

    File URL: https://www.cts.kth.se/polopoly_fs/1.799592!/CTS2018-3.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. West, Jens & Börjesson, Maria & Engelson, Leonid, 2016. "Accuracy of the Gothenburg congestion charges forecast," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 266-277.
    2. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    3. Börjesson, Maria & Kristoffersson, Ida, 2018. "The Swedish congestion charges: Ten years on," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 35-51.
    4. Holmgren, Johan, 2007. "Meta-analysis of public transport demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1021-1035, December.
    5. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Verhoef, Erik T., 2014. "Over-reporting vs. overreacting: Commuters’ perceptions of travel times," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 476-494.
    6. J. P. Royston, 1982. "The W Test for Normality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 176-180, June.
    7. Varotto, Silvia F. & Glerum, Aurélie & Stathopoulos, Amanda & Bierlaire, Michel & Longo, Giovanni, 2017. "Mitigating the impact of errors in travel time reporting on mode choice modelling," Journal of Transport Geography, Elsevier, vol. 62(C), pages 236-246.
    8. De Borger, Bruno & Fosgerau, Mogens, 2008. "The trade-off between money and travel time: A test of the theory of reference-dependent preferences," Journal of Urban Economics, Elsevier, vol. 64(1), pages 101-115, July.
    9. Börjesson, Maria & Eliasson, Jonas, 2014. "Experiences from the Swedish Value of Time study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 144-158.
    10. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    11. Hess, Stephane & Daly, Andrew & Dekker, Thijs & Cabral, Manuel Ojeda & Batley, Richard, 2017. "A framework for capturing heterogeneity, heteroskedasticity, non-linearity, reference dependence and design artefacts in value of time research," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 126-149.
    12. Börjesson, Maria & Fosgerau, Mogens, 2015. "Response time patterns in a stated choice experiment," Journal of choice modelling, Elsevier, vol. 14(C), pages 48-58.
    13. Börjesson , Maria & Kristoffersson, Ida, 2017. "The Swedish congestion charges: ten years on: - and effects of increasing charging levels," Working papers in Transport Economics 2017:2, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    14. Díaz, Federico & Cantillo, Víctor & Arellana, Julian & Ortúzar, Juan de Dios, 2015. "Accounting for stochastic variables in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 222-237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.
    2. Eivind Tveter, 2023. "The value of travel time: a revealed preferences approach using exogenous variation in travel costs and automatic traffic count data," Transportation, Springer, vol. 50(6), pages 2273-2297, December.
    3. Thomas E. Guerrero & C. Angelo Guevara & Elisabetta Cherchi & Juan de Dios Ortúzar, 2021. "Addressing endogeneity in strategic urban mode choice models," Transportation, Springer, vol. 48(4), pages 2081-2102, August.
    4. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot & Jang, Sunghoon, 2024. "Alternate closed-form weibit-based model for assessing travel choice with an oddball alternative," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    5. Chakroborty, Partha & Pinjari, Abdul Rawoof & Meena, Jayant & Gandhi, Avinash, 2021. "A Psychophysical Ordered Response Model of Time Perception and Service Quality: Application to Level of Service Analysis at Toll Plazas," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 44-64.
    6. Carlos Carrion & David Levinson, 2019. "Overestimation and underestimation of travel time on commute trips: GPS vs. self- reporting," Working Papers 2019-05, University of Minnesota: Nexus Research Group.
    7. Aaditya, Bh. & Rahul, T.M., 2021. "Psychological impacts of COVID-19 pandemic on the mode choice behaviour: A hybrid choice modelling approach," Transport Policy, Elsevier, vol. 108(C), pages 47-58.
    8. Stephane Hess & Andrew Daly & Maria Börjesson, 2020. "A critical appraisal of the use of simple time-money trade-offs for appraisal value of travel time measures," Transportation, Springer, vol. 47(3), pages 1541-1570, June.
    9. Peer, Stefanie & Börjesson, Maria, 2018. "Temporal framing of stated preference experiments: does it affect valuations?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 319-333.
    10. Batarce, Marco, 2024. "Estimation of discrete choice models with error in variables: An application to revealed preference data with aggregate service level variables," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    11. Andersson, Angelica & Engelson, Leonid & Börjesson, Maria & Daly, Andrew & Kristoffersson, Ida, 2022. "Long-distance mode choice model estimation using mobile phone network data," Journal of choice modelling, Elsevier, vol. 42(C).
    12. Hu, Beibei & Sun, Yue & Li, Zixun & Zhang, Yanli & Sun, Huijun & Dong, Xianlei, 2024. "Competitive advantage of car-sharing based on travel costs comparison model: A case study of Beijing, China," Research in Transportation Economics, Elsevier, vol. 103(C).
    13. Biswas, Mehek & Bhat, Chandra R. & Ghosh, Sulagna & Pinjari, Abdul Rawoof, 2024. "Choice models with stochastic variables and random coefficients," Journal of choice modelling, Elsevier, vol. 51(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 520-541.
    2. Stephane Hess & Andrew Daly & Maria Börjesson, 2020. "A critical appraisal of the use of simple time-money trade-offs for appraisal value of travel time measures," Transportation, Springer, vol. 47(3), pages 1541-1570, June.
    3. Lorenzo Varela, Juan Manuel & Börjesson, Maria & Daly, Andrew, 2018. "Public transport: One mode or several?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 137-156.
    4. Batarce, Marco, 2024. "Estimation of discrete choice models with error in variables: An application to revealed preference data with aggregate service level variables," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    5. Kingsley Adjenughwure & Basil Papadopoulos, 2019. "Towards a Fair and More Transparent Rule-Based Valuation of Travel Time Savings," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    6. Jens West & Maria Börjesson, 2020. "The Gothenburg congestion charges: cost–benefit analysis and distribution effects," Transportation, Springer, vol. 47(1), pages 145-174, February.
    7. Richard Batley & John Bates & Michiel Bliemer & Maria Börjesson & Jeremy Bourdon & Manuel Ojeda Cabral & Phani Kumar Chintakayala & Charisma Choudhury & Andrew Daly & Thijs Dekker & Efie Drivyla & Ton, 2019. "New appraisal values of travel time saving and reliability in Great Britain," Transportation, Springer, vol. 46(3), pages 583-621, June.
    8. Schmid, Basil & Becker, Felix & Axhausen, Kay W. & Widmer, Paul & Stein, Petra, 2023. "A simultaneous model of residential location, mobility tool ownership and mode choice using latent variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    9. Peer, Stefanie & Börjesson, Maria, 2018. "Temporal framing of stated preference experiments: does it affect valuations?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 319-333.
    10. Tsoleridis, Panagiotis & Choudhury, Charisma F. & Hess, Stephane, 2022. "Deriving transport appraisal values from emerging revealed preference data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 225-245.
    11. Varotto, Silvia F. & Glerum, Aurélie & Stathopoulos, Amanda & Bierlaire, Michel & Longo, Giovanni, 2017. "Mitigating the impact of errors in travel time reporting on mode choice modelling," Journal of Transport Geography, Elsevier, vol. 62(C), pages 236-246.
    12. Biswas, Mehek & Bhat, Chandra R. & Pinjari, Abdul Rawoof, 2024. "The use of pooled RP-SP choice data to simultaneously identify alternative attributes and random coefficients on those attributes," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    13. Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.
    14. Biswas, Mehek & Bhat, Chandra R. & Ghosh, Sulagna & Pinjari, Abdul Rawoof, 2024. "Choice models with stochastic variables and random coefficients," Journal of choice modelling, Elsevier, vol. 51(C).
    15. Sander Cranenburgh & Marco Kouwenhoven, 2021. "An artificial neural network based method to uncover the value-of-travel-time distribution," Transportation, Springer, vol. 48(5), pages 2545-2583, October.
    16. Maria Börjesson & Marco Kouwenhoven & Gerard Jong & Andrew Daly, 2023. "Can repeated surveys reveal the variation of the value of travel time over time?," Transportation, Springer, vol. 50(1), pages 245-284, February.
    17. Carlos Carrion & David Levinson, 2019. "Overestimation and underestimation of travel time on commute trips: GPS vs. self- reporting," Working Papers 2019-05, University of Minnesota: Nexus Research Group.
    18. Lu, Hui & Hess, Stephane & Daly, Andrew & Rohr, Charlene & Patruni, Bhanu & Vuk, Goran, 2021. "Using state-of-the-art models in applied work: Travellers willingness to pay for a toll tunnel in Copenhagen," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 37-52.
    19. Kouwenhoven, Marco & de Jong, Gerard, 2018. "Value of travel time as a function of comfort," Journal of choice modelling, Elsevier, vol. 28(C), pages 97-107.
    20. Wei, Tangjian & Batley, Richard & Liu, Ronghui & Xu, Guangming & Tang, Yili, 2024. "A method of time-varying demand distribution estimation for high-speed railway networks with user equilibrium model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).

    More about this item

    Keywords

    Hybrid choice models; Latent variables; Error quantification; Measurement error models; RP Value of Time; Self-reported indicators;
    All these keywords.

    JEL classification:

    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:ctswps:2018_003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CTS (email available below). General contact details of provider: http://www.cts.kth.se/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.