IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017762.html
   My bibliography  Save this article

Quantifying the impact of travel time duration and valuation on modal shift in Swiss passenger transportation

Author

Listed:
  • Luh, Sandro
  • Kannan, Ramachandran
  • McKenna, Russell
  • Schmidt, Thomas J.
  • Kober, Tom

Abstract

Decarbonizing the passenger transportation sector is critical for climate change mitigation. Existing studies on net-zero scenarios using Energy System Optimization Models (ESOM) often overlook non-monetary aspects of consumers' mobility choices but primarily focus on cost aspects. This study incorporates consumers' travel time duration and valuation, and an endogenous modal shift option into the Swiss TIMES Energy system Model (STEM). STEM is applied in a multi-objective optimization framework to quantify the impacts of faster Public Transport (PT) and slower car speeds on modal shifts in the transport sector's transformation. Similarly, we assess scenarios where consumers weigh travel time less, reflecting improved travel productivity. The results show that speed variations on medium- and long-distance trips, which can be interpreted as policies for highway speed limits and more efficient PT, can induce modal shifts towards 5–10% higher PT demand. Its implied secondary effects across the energy system include a reduced need for electrification of heavy-duty trucks by 11% and a decrease in hydrogen demand in road transportation by 34% by 2050. If travelers weigh costs over travel time, PT becomes less competitive against cars. Thus, electric vehicles (EVs) need to play a more dominant role in decarbonization, with a demand increase of 13% in 2040 (+9.2 billion passenger kilometer (bpkm)) and 6% in 2050 (+5.0 bpkm), along with the need for additional 45,000 public chargers of 22 kW size. Policy implications include the emphasis on improved PT speeds, speed limits on highways, needs to achieve more widespread EV adoption, and the need for balancing travelers' decision factors when aiming for reduced transport CO2 emissions.

Suggested Citation

  • Luh, Sandro & Kannan, Ramachandran & McKenna, Russell & Schmidt, Thomas J. & Kober, Tom, 2024. "Quantifying the impact of travel time duration and valuation on modal shift in Swiss passenger transportation," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017762
    DOI: 10.1016/j.apenergy.2023.122412
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fazlollahi, Samira & Mandel, Pierre & Becker, Gwenaelle & Maréchal, Francois, 2012. "Methods for multi-objective investment and operating optimization of complex energy systems," Energy, Elsevier, vol. 45(1), pages 12-22.
    2. Pye, Steve & Usher, Will & Strachan, Neil, 2014. "The uncertain but critical role of demand reduction in meeting long-term energy decarbonisation targets," Energy Policy, Elsevier, vol. 73(C), pages 575-586.
    3. Axhausen, Kay W. & Hess, Stephane & König, Arnd & Abay, Georg & Bates, John J. & Bierlaire, Michel, 2008. "Income and distance elasticities of values of travel time savings: New Swiss results," Transport Policy, Elsevier, vol. 15(3), pages 173-185, May.
    4. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    5. Fischer, Robert & Toffolo, Andrea, 2022. "Is total system cost minimization fair to all the actors of an energy system? Not according to game theory," Energy, Elsevier, vol. 239(PC).
    6. Pedinotti-Castelle, Marianne & Pineau, Pierre-Olivier & Vaillancourt, Kathleen & Amor, Ben, 2022. "Freight transport modal shifts in a TIMES energy model: Impacts of endogenous and exogenous modeling choice," Applied Energy, Elsevier, vol. 324(C).
    7. Schafer, Andreas & Victor, David G., 2000. "The future mobility of the world population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(3), pages 171-205, April.
    8. Ramachandran Kannan & Evangelos Panos & Stefan Hirschberg & Tom Kober, 2022. "A net‐zero Swiss energy system by 2050: Technological and policy options for the transition of the transportation sector," Futures & Foresight Science, John Wiley & Sons, vol. 4(3-4), September.
    9. Schmid, Basil & Molloy, Joseph & Peer, Stefanie & Jokubauskaite, Simona & Aschauer, Florian & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2021. "The value of travel time savings and the value of leisure in Zurich: Estimation, decomposition and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 186-215.
    10. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    11. Salvucci, Raffaele & Tattini, Jacopo & Gargiulo, Maurizio & Lehtilä, Antti & Karlsson, Kenneth, 2018. "Modelling transport modal shift in TIMES models through elasticities of substitution," Applied Energy, Elsevier, vol. 232(C), pages 740-751.
    12. Pye, Steve & Daly, Hannah, 2015. "Modelling sustainable urban travel in a whole systems energy model," Applied Energy, Elsevier, vol. 159(C), pages 97-107.
    13. Jara-Diaz, Sergio R., 1990. "Consumer's surplus and the value of travel time savings," Transportation Research Part B: Methodological, Elsevier, vol. 24(1), pages 73-77, February.
    14. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    15. Dorner, Zack, 2019. "A behavioral rebound effect," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    16. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Alarcon-Rodriguez, Arturo & Ault, Graham & Galloway, Stuart, 2010. "Multi-objective planning of distributed energy resources: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1353-1366, June.
    18. Michael N. Taptich & Arpad Horvath & Mikhail V. Chester, 2016. "Worldwide Greenhouse Gas Reduction Potentials in Transportation by 2050," Journal of Industrial Ecology, Yale University, vol. 20(2), pages 329-340, April.
    19. Kannan, Ramachandran & Hirschberg, Stefan, 2016. "Interplay between electricity and transport sectors – Integrating the Swiss car fleet and electricity system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 514-531.
    20. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    21. Chavez-Baeza, Carlos & Sheinbaum-Pardo, Claudia, 2014. "Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area," Energy, Elsevier, vol. 66(C), pages 624-634.
    22. Wardman, Mark & Toner, Jeremy & Fearnley, Nils & Flügel, Stefan & Killi, Marit, 2018. "Review and meta-analysis of inter-modal cross-elasticity evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 662-681.
    23. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    24. Lawrence Frank & Mark Bradley & Sarah Kavage & James Chapman & T. Lawton, 2008. "Urban form, travel time, and cost relationships with tour complexity and mode choice," Transportation, Springer, vol. 35(1), pages 37-54, January.
    25. Daly, Hannah E. & Ramea, Kalai & Chiodi, Alessandro & Yeh, Sonia & Gargiulo, Maurizio & Gallachóir, Brian Ó, 2014. "Incorporating travel behaviour and travel time into TIMES energy system models," Applied Energy, Elsevier, vol. 135(C), pages 429-439.
    26. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    27. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, June.
    28. Mogens Fosgerau, 2019. "Automation and the Value of Time in Passenger Transport," International Transport Forum Discussion Papers 2019/10, OECD Publishing.
    29. Aryanpur, Vahid & Balyk, Olexandr & Daly, Hannah & Ó Gallachóir, Brian & Glynn, James, 2022. "Decarbonisation of passenger light-duty vehicles using spatially resolved TIMES-Ireland Model," Applied Energy, Elsevier, vol. 316(C).
    30. Salvucci, Raffaele & Gargiulo, Maurizio & Karlsson, Kenneth, 2019. "The role of modal shift in decarbonising the Scandinavian transport sector: Applying substitution elasticities in TIMES-Nordic," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    31. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    32. Tattini, Jacopo & Gargiulo, Maurizio & Karlsson, Kenneth, 2018. "Reaching carbon neutral transport sector in Denmark – Evidence from the incorporation of modal shift into the TIMES energy system modeling framework," Energy Policy, Elsevier, vol. 113(C), pages 571-583.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvucci, Raffaele & Gargiulo, Maurizio & Karlsson, Kenneth, 2019. "The role of modal shift in decarbonising the Scandinavian transport sector: Applying substitution elasticities in TIMES-Nordic," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Raffaele Salvucci & Stefan Petrović & Kenneth Karlsson & Markus Wråke & Tanu Priya Uteng & Olexandr Balyk, 2019. "Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review," Energies, MDPI, vol. 12(12), pages 1-19, June.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    5. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Salvucci, Raffaele & Tattini, Jacopo & Gargiulo, Maurizio & Lehtilä, Antti & Karlsson, Kenneth, 2018. "Modelling transport modal shift in TIMES models through elasticities of substitution," Applied Energy, Elsevier, vol. 232(C), pages 740-751.
    7. Hagos, Dejene Assefa & Ahlgren, Erik O., 2020. "Exploring cost-effective transitions to fossil independent transportation in the future energy system of Denmark," Applied Energy, Elsevier, vol. 261(C).
    8. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    9. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    10. Pedinotti-Castelle, Marianne & Pineau, Pierre-Olivier & Vaillancourt, Kathleen & Amor, Ben, 2022. "Freight transport modal shifts in a TIMES energy model: Impacts of endogenous and exogenous modeling choice," Applied Energy, Elsevier, vol. 324(C).
    11. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    12. Horak, Daniel & Hainoun, Ali & Neugebauer, Georg & Stoeglehner, Gernot, 2022. "A review of spatio-temporal urban energy system modeling for urban decarbonization strategy formulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Gorman, Nicholas & MacGill, Iain & Bruce, Anna, 2024. "Re-dispatch simplification analysis: Confirmation holism and assessing the impact of simplifications on energy system model performance," Applied Energy, Elsevier, vol. 365(C).
    14. Tattini, Jacopo & Gargiulo, Maurizio & Karlsson, Kenneth, 2018. "Reaching carbon neutral transport sector in Denmark – Evidence from the incorporation of modal shift into the TIMES energy system modeling framework," Energy Policy, Elsevier, vol. 113(C), pages 571-583.
    15. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    16. Price, James & Keppo, Ilkka, 2017. "Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models," Applied Energy, Elsevier, vol. 195(C), pages 356-369.
    17. Danial Esmaeili Aliabadi & David Manske & Lena Seeger & Reinhold Lehneis & Daniela Thrän, 2023. "Integrating Knowledge Acquisition, Visualization, and Dissemination in Energy System Models: BENOPTex Study," Energies, MDPI, vol. 16(13), pages 1-14, July.
    18. Lv, Fei & Wu, Qiong & Ren, Hongbo & Zhou, Weisheng & Li, Qifen, 2024. "On the design and analysis of long-term low-carbon roadmaps: A review and evaluation of available energy-economy-environment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    19. Dubois, Antoine & Dumas, Jonathan & Thiran, Paolo & Limpens, Gauthier & Ernst, Damien, 2023. "Multi-objective near-optimal necessary conditions for multi-sectoral planning," Applied Energy, Elsevier, vol. 350(C).
    20. Eimantas Neniškis & Arvydas Galinis & Egidijus Norvaiša, 2021. "Improving Transport Modeling in MESSAGE Energy Planning Model: Vehicle Age Distributions," Energies, MDPI, vol. 14(21), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.