IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v319y2024i2p399-412.html
   My bibliography  Save this article

Mathematical optimization modelling for group counterfactual explanations

Author

Listed:
  • Carrizosa, Emilio
  • Ramírez-Ayerbe, Jasone
  • Romero Morales, Dolores

Abstract

Counterfactual Analysis has shown to be a powerful tool in the burgeoning field of Explainable Artificial Intelligence. In Supervised Classification, this means associating with each record a so-called counterfactual explanation: an instance that is close to the record and whose probability of being classified in the opposite class by a given classifier is high. While the literature focuses on the problem of finding one counterfactual for one record, in this paper we take a stakeholder perspective, and we address the more general setting in which a group of counterfactual explanations is sought for a group of instances. We introduce some mathematical optimization models as illustration of each possible allocation rule between counterfactuals and instances, and we identify a number of research challenges for the Operations Research community.

Suggested Citation

  • Carrizosa, Emilio & Ramírez-Ayerbe, Jasone & Romero Morales, Dolores, 2024. "Mathematical optimization modelling for group counterfactual explanations," European Journal of Operational Research, Elsevier, vol. 319(2), pages 399-412.
  • Handle: RePEc:eee:ejores:v:319:y:2024:i:2:p:399-412
    DOI: 10.1016/j.ejor.2024.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172400002X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:319:y:2024:i:2:p:399-412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.