evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
References listed on IDEAS
- Kurt Hornik & Christian Buchta & Achim Zeileis, 2009. "Open-source machine learning: R meets Weka," Computational Statistics, Springer, vol. 24(2), pages 225-232, May.
- Torsten Hothorn & Achim Zeileis, 2014. "partykit: A Modular Toolkit for Recursive Partytioning in R," Working Papers 2014-10, Faculty of Economics and Statistics, Universität Innsbruck.
- Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
- Calcagno, Vincent & de Mazancourt, Claire, 2010. "glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i12).
- Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Max Tabord-Meehan, 2023.
"Stratification Trees for Adaptive Randomisation in Randomised Controlled Trials,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(5), pages 2646-2673.
- Max Tabord-Meehan, 2018. "Stratification Trees for Adaptive Randomization in Randomized Controlled Trials," Papers 1806.05127, arXiv.org, revised Jul 2022.
- Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
- Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
- Alvarez-Iglesias, Alberto & Hinde, John & Ferguson, John & Newell, John, 2017. "An alternative pruning based approach to unbiased recursive partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 90-102.
- Fernandez Martinez, Roberto & Lostado Lorza, Ruben & Santos Delgado, Ana Alexandra & Piedra, Nelson, 2021. "Use of classification trees and rule-based models to optimize the funding assignment to research projects: A case study of UTPL," Journal of Informetrics, Elsevier, vol. 15(1).
- Höppner, Sebastiaan & Stripling, Eugen & Baesens, Bart & Broucke, Seppe vanden & Verdonck, Tim, 2020. "Profit driven decision trees for churn prediction," European Journal of Operational Research, Elsevier, vol. 284(3), pages 920-933.
- Anja Breuer & Yves Staudt, 2022. "Equalization Reserves for Reinsurance and Non-Life Undertakings in Switzerland," Risks, MDPI, vol. 10(3), pages 1-41, March.
- Davide Natalini & Giangiacomo Bravo & Aled Wynne Jones, 2019. "Global food security and food riots – an agent-based modelling approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(5), pages 1153-1173, October.
- Chi-Chang Chang & Tse-Hung Huang & Pei-Wei Shueng & Ssu-Han Chen & Chun-Chia Chen & Chi-Jie Lu & Yi-Ju Tseng, 2021. "Developing a Stacked Ensemble-Based Classification Scheme to Predict Second Primary Cancers in Head and Neck Cancer Survivors," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
- Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
- Yves Staudt & Joël Wagner, 2021. "Assessing the Performance of Random Forests for Modeling Claim Severity in Collision Car Insurance," Risks, MDPI, vol. 9(3), pages 1-28, March.
- Vrigazova Borislava, 2021. "The Proportion for Splitting Data into Training and Test Set for the Bootstrap in Classification Problems," Business Systems Research, Sciendo, vol. 12(1), pages 228-242, May.
- Islam, Towhidul & Meade, Nigel & Carson, Richard T. & Louviere, Jordan J. & Wang, Juan, 2022. "The usefulness of socio-demographic variables in predicting purchase decisions: Evidence from machine learning procedures," Journal of Business Research, Elsevier, vol. 151(C), pages 324-338.
- Ronilo Ragodos & Tong Wang, 2022. "Disjunctive Rule Lists," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3259-3276, November.
- Claudio Conversano & Elise Dusseldorp, 2017. "Modeling Threshold Interaction Effects Through the Logistic Classification Trunk," Journal of Classification, Springer;The Classification Society, vol. 34(3), pages 399-426, October.
- Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
- Patrick Rehill & Nicholas Biddle, 2022. "Policy learning for many outcomes of interest: Combining optimal policy trees with multi-objective Bayesian optimisation," Papers 2212.06312, arXiv.org, revised Oct 2023.
- Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
- Roberto Chiosa & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "A Data Analytics-Based Energy Information System (EIS) Tool to Perform Meter-Level Anomaly Detection and Diagnosis in Buildings," Energies, MDPI, vol. 14(1), pages 1-28, January.
- Hajko, Vladimír, 2017. "The failure of Energy-Economy Nexus: A meta-analysis of 104 studies," Energy, Elsevier, vol. 125(C), pages 771-787.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
- Bergeaud, Antonin & Raimbault, Juste, 2020.
"An empirical analysis of the spatial variability of fuel prices in the United States,"
Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 131-143.
- Antonin Bergeaud & Juste Raimbault, 2020. "An empirical analysis of the spatial variability of fuel prices in the United States," Post-Print hal-02370106, HAL.
- Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
- Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
- Souhila Ghanem & Raphaël Couturier & Pablo Gregori, 2021. "An Accurate and Easy to Interpret Binary Classifier Based on Association Rules Using Implication Intensity and Majority Vote," Mathematics, MDPI, vol. 9(12), pages 1-12, June.
- Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008.
"A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package,"
European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
- Michel Grabisch & Ivan Kojadinovic & Patrick Meyer, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00187175, HAL.
- Michel Grabisch & Ivan Kojadinovic & Patrick Meyer, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," Post-Print halshs-00187175, HAL.
- Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).
- Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021.
"Forecasting recovery rates on non-performing loans with machine learning,"
International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
- Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2020. "Forecasting recovery rates on non-performing loans with machine learning," LIDAM Reprints LFIN 2020002, Université catholique de Louvain, Louvain Finance (LFIN).
- Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2020. "Forecasting recovery rates on non-performing loans with machine learning," LIDAM Discussion Papers LFIN 2020002, Université catholique de Louvain, Louvain Finance (LFIN).
- Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
- Riza, Lala Septem & Bergmeir, Christoph & Herrera, Francisco & Benítez, José M., 2015. "frbs: Fuzzy Rule-Based Systems for Classification and Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i06).
- Karin Wolffhechel & Amanda C Hahn & Hanne Jarmer & Claire I Fisher & Benedict C Jones & Lisa M DeBruine, 2015. "Testing the Utility of a Data-Driven Approach for Assessing BMI from Face Images," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
- Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
- Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
- Castellares, Fredy & PatrÃcio, Silvio C. & Lemonte, Artur J. & Queiroz, Bernardo L., 2020. "On closed-form expressions to Gompertz–Makeham life expectancy," Theoretical Population Biology, Elsevier, vol. 134(C), pages 53-60.
- Dirick, Lore & Claeskens, Gerda & Baesens, Bart, 2015. "An Akaike information criterion for multiple event mixture cure models," European Journal of Operational Research, Elsevier, vol. 241(2), pages 449-457.
- Huan Yu & Jun Yang & Yu Zhao, 2018. "Reliability of nonrepairable phased-mission systems with common bus performance sharing," Journal of Risk and Reliability, , vol. 232(6), pages 647-660, December.
- Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
- Muhammet Burak Kılıç & Yusuf Şahin & Melih Burak Koca, 2021. "Genetic algorithm approach with an adaptive search space based on EM algorithm in two-component mixture Weibull parameter estimation," Computational Statistics, Springer, vol. 36(2), pages 1219-1242, June.
- Andrea S Martinez-Vernon & James A Covington & Ramesh P Arasaradnam & Siavash Esfahani & Nicola O’Connell & Ioannis Kyrou & Richard S Savage, 2018. "An improved machine learning pipeline for urinary volatiles disease detection: Diagnosing diabetes," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
- Khamma, Thulasi Ram & Zhang, Yuming & Guerrier, Stéphane & Boubekri, Mohamed, 2020. "Generalized additive models: An efficient method for short-term energy prediction in office buildings," Energy, Elsevier, vol. 213(C).
More about this item
Keywords
machine learning; classification trees; regression trees; evolutionary algorithms; R;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2011-10-09 (Computational Economics)
- NEP-ORE-2011-10-09 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2011-20. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Judith Courian (email available below). General contact details of provider: https://edirc.repec.org/data/fuibkat.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.