IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11232-d1197230.html
   My bibliography  Save this article

Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks

Author

Listed:
  • Teddy Lazebnik

    (Department of Cancer Biology, Cancer Institute, University College London, London WC1E 6BT, UK)

  • Tzach Fleischer

    (Department of Computer Science, Holon Institute of Technology, Holon 5810201, Israel)

  • Amit Yaniv-Rosenfeld

    (Shalvata Mental Health Care Center, Hod Hasharon 45100, Israel
    Sacklar Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
    Department of Management, Bar-Ilan University, Ramat-Gan 529002, Israel)

Abstract

Data-driven economic tasks have gained significant attention in economics, allowing researchers and policymakers to make better decisions and design efficient policies. Recently, with the advancement of machine learning (ML) and other artificial intelligence (AI) methods, researchers can now solve complex economic tasks with previously unseen performance and ease. However, to use such methods, one is required to have a non-trivial level of expertise in ML or AI, which currently is not standard knowledge in economics. In order to bridge this gap, automatic machine learning (AutoML) models have been developed, allowing non-experts to efficiently use advanced ML models with their data. Nonetheless, not all AutoML models are created equal in general, particularly for the unique properties associated with economic data. In this paper, we present a benchmarking study of biologically inspired and other AutoML techniques for economic tasks. We evaluate four different AutoML models alongside two baseline methods using a set of 50 diverse economic tasks. Our results show that biologically inspired AutoML models (slightly) outperformed non-biological AutoML in economic tasks, while all AutoML models outperformed the traditional methods. Based on our results, we conclude that biologically inspired AutoML has the potential to improve our economic understanding while shifting a large portion of the analysis burden from the economist to a computer.

Suggested Citation

  • Teddy Lazebnik & Tzach Fleischer & Amit Yaniv-Rosenfeld, 2023. "Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks," Sustainability, MDPI, vol. 15(14), pages 1-9, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11232-:d:1197230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11232/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11232/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saeed Nosratabadi & Amir Mosavi & Puhong Duan & Pedram Ghamisi, 2020. "Data Science in Economics," Papers 2003.13422, arXiv.org.
    2. Piotr Dybka & Michał Kowalczuk & Bartosz Olesiński & Andrzej Torój & Marek Rozkrut, 2019. "Currency demand and MIMIC models: towards a structured hybrid method of measuring the shadow economy," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 26(1), pages 4-40, February.
    3. Brannlund, Runar & Nordstrom, Jonas, 2004. "Carbon tax simulations using a household demand model," European Economic Review, Elsevier, vol. 48(1), pages 211-233, February.
    4. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," OSF Preprints yc6e2, Center for Open Science.
    5. Thierry Warin & Aleksandar Stojkov, 2021. "Machine Learning in Finance: A Metadata-Based Systematic Review of the Literature," JRFM, MDPI, vol. 14(7), pages 1-31, July.
    6. Sondre Litleskare & Wendy Wuyts, 2023. "Planning Reclamation, Diagnosis and Reuse in Norwegian Timber Construction with Circular Economy Investment and Operating Costs for Information," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    7. Hyejung Chung & Kyung-shik Shin, 2018. "Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
    8. Adrian, Tobias & Crump, Richard K. & Moench, Emanuel, 2013. "Pricing the term structure with linear regressions," Journal of Financial Economics, Elsevier, vol. 110(1), pages 110-138.
    9. Anna Agrapetidou & Paulos Charonyktakis & Periklis Gogas & Theophilos Papadimitriou & Ioannis Tsamardinos, 2021. "An AutoML application to forecasting bank failures," Applied Economics Letters, Taylor & Francis Journals, vol. 28(1), pages 5-9, January.
    10. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," MetaArXiv haf2v, Center for Open Science.
    11. Shrestha, Ram M. & Marpaung, Charles O. P., 1999. "Supply- and demand-side effects of carbon tax in the Indonesian power sector: an integrated resource planning analysis," Energy Policy, Elsevier, vol. 27(4), pages 185-194, April.
    12. Li, Zhangtao & Liu, Jing, 2016. "A multi-agent genetic algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 336-347.
    13. Ha, Le Thanh & Dung, Hoang Phuong & Thanh, To Trung, 2021. "Economic complexity and shadow economy: A multi-dimensional analysis," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 408-422.
    14. Willenborg, M, 1999. "Empirical analysis of the economic demand for auditing in the initial public offerings market," Journal of Accounting Research, Wiley Blackwell, vol. 37(1), pages 225-238.
    15. Saeed Nosratabadi & Amirhosein Mosavi & Puhong Duan & Pedram Ghamisi & Ferdinand Filip & Shahab S. Band & Uwe Reuter & Joao Gama & Amir H. Gandomi, 2020. "Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods," Mathematics, MDPI, vol. 8(10), pages 1-25, October.
    16. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," Thesis Commons auyvc, Center for Open Science.
    17. Chen, Weiyi & Zhang, Limao, 2022. "An automated machine learning approach for earthquake casualty rate and economic loss prediction," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    18. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," LawArXiv kczj5, Center for Open Science.
    19. Shrestha, Ram M & Shrestha, Rabin & Bhattacharya, S C, 1998. "Environmental and electricity planning implications of carbon tax and technological constraints in a developing country," Energy Policy, Elsevier, vol. 26(7), pages 527-533, June.
    20. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," EdArXiv 5dwrt, Center for Open Science.
    21. Andris Kairiss & Ineta Geipele & Irina Olevska-Kairisa, 2023. "Sustainability of Cultural Heritage-Related Projects: Use of Socio-Economic Indicators in Latvia," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    22. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," SocArXiv 9vdwf, Center for Open Science.
    23. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    24. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teddy Lazebnik & Dan Gorlitsky, 2023. "Can We Mathematically Spot the Possible Manipulation of Results in Research Manuscripts Using Benford’s Law?," Data, MDPI, vol. 8(11), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Labib Shami & Teddy Lazebnik, 2024. "Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1459-1476, April.
    2. Marcus Vinicius Santos & Fernando Morgado-Dias & Thiago C. Silva, 2023. "Oil Sector and Sentiment Analysis—A Review," Energies, MDPI, vol. 16(12), pages 1-29, June.
    3. David G. Green, 2023. "Emergence in complex networks of simple agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 419-462, July.
    4. Lin, Yong & Wang, Renyu & Gong, Xingyue & Jia, Guozhu, 2022. "Cross-correlation and forecast impact of public attention on USD/CNY exchange rate: Evidence from Baidu Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    5. Cheng Zhang & Nilam Nur Amir Sjarif & Roslina Ibrahim, 2023. "Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020-2022," Papers 2305.04811, arXiv.org, revised Sep 2023.
    6. Yong-Chao Su & Cheng-Yu Wu & Cheng-Hong Yang & Bo-Sheng Li & Sin-Hua Moi & Yu-Da Lin, 2021. "Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    7. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    8. Urko Aguirre-Larracoechea & Cruz E. Borges, 2021. "Imputation for Repeated Bounded Outcome Data: Statistical and Machine-Learning Approaches," Mathematics, MDPI, vol. 9(17), pages 1-27, August.
    9. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    10. ErLe Du & Meng Ji, 2021. "Analyzing the regional economic changes in a high-tech industrial development zone using machine learning algorithms," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-18, June.
    11. Steve J. Bickley & Benno Torgler, 2021. "Behavioural Economics, What Have we Missed? Exploring “Classical” Behavioural Economics Roots in AI, Cognitive Psychology, and Complexity Theory," CREMA Working Paper Series 2021-21, Center for Research in Economics, Management and the Arts (CREMA).
    12. Oliver Hümbelin & Lukas Hobi & Robert Fluder, 2021. "Rich Cities, Poor Countryside? Social Structure of the Poor and Poverty Risks in Urban and Rural Places in an Affluent Country. An Administrative Data based Analysis using Random Forest," University of Bern Social Sciences Working Papers 40, University of Bern, Department of Social Sciences, revised 10 Nov 2021.
    13. Petr Suler & Zuzana Rowland & Tomas Krulicky, 2021. "Evaluation of the Accuracy of Machine Learning Predictions of the Czech Republic’s Exports to the China," JRFM, MDPI, vol. 14(2), pages 1-30, February.
    14. Saeed Nosratabadi & Nesrine Khazami & Marwa Ben Abdallah & Zoltan Lackner & Shahab S. Band & Amir Mosavi & Csaba Mako, 2020. "Social Capital Contributions to Food Security: A Comprehensive Literature Review," Papers 2012.03606, arXiv.org.
    15. Xiaodong Zhang & Suhui Liu & Xin Zheng, 2021. "Stock Price Movement Prediction Based on a Deep Factorization Machine and the Attention Mechanism," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
    16. Meir Russ, 2021. "Knowledge Management for Sustainable Development in the Era of Continuously Accelerating Technological Revolutions: A Framework and Models," Sustainability, MDPI, vol. 13(6), pages 1-32, March.
    17. Amir Masoud Rahmani & Efat Yousefpoor & Mohammad Sadegh Yousefpoor & Zahid Mehmood & Amir Haider & Mehdi Hosseinzadeh & Rizwan Ali Naqvi, 2021. "Machine Learning (ML) in Medicine: Review, Applications, and Challenges," Mathematics, MDPI, vol. 9(22), pages 1-52, November.
    18. Miguel Ángel Echarte Fernández & Sergio Luis Náñez Alonso & Ricardo Reier Forradellas & Javier Jorge-Vázquez, 2022. "From the Great Recession to the COVID-19 Pandemic: The Risk of Expansionary Monetary Policies," Risks, MDPI, vol. 10(2), pages 1-17, January.
    19. Hanyao Gao & Gang Kou & Haiming Liang & Hengjie Zhang & Xiangrui Chao & Cong-Cong Li & Yucheng Dong, 2024. "Machine learning in business and finance: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
    20. Cui, Xiwen & Yu, Xiaoyu & Niu, Dongxiao, 2024. "The ultra-short-term wind power point-interval forecasting model based on improved variational mode decomposition and bidirectional gated recurrent unit improved by improved sparrow search algorithm a," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11232-:d:1197230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.