IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v299y2022i3p1045-1054.html
   My bibliography  Save this article

On sparse optimal regression trees

Author

Listed:
  • Blanquero, Rafael
  • Carrizosa, Emilio
  • Molero-Río, Cristina
  • Morales, Dolores Romero

Abstract

In this paper, we model an optimal regression tree through a continuous optimization problem, where a compromise between prediction accuracy and both types of sparsity, namely local and global, is sought. Our approach can accommodate important desirable properties for the regression task, such as cost-sensitivity and fairness. Thanks to the smoothness of the predictions, we can derive local explanations on the continuous predictor variables. The computational experience reported shows the outperformance of our approach in terms of prediction accuracy against standard benchmark regression methods such as CART, OLS and LASSO. Moreover, the scalability of our approach with respect to the size of the training sample is illustrated.

Suggested Citation

  • Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Morales, Dolores Romero, 2022. "On sparse optimal regression trees," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1045-1054.
  • Handle: RePEc:eee:ejores:v:299:y:2022:i:3:p:1045-1054
    DOI: 10.1016/j.ejor.2021.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721010626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Romero Morales, Dolores, 2020. "Sparsity in optimal randomized classification trees," European Journal of Operational Research, Elsevier, vol. 284(1), pages 255-272.
    2. Oktay Günlük & Jayant Kalagnanam & Minhan Li & Matt Menickelly & Katya Scheinberg, 2021. "Optimal decision trees for categorical data via integer programming," Journal of Global Optimization, Springer, vol. 81(1), pages 233-260, September.
    3. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Chikalov, Igor & Hussain, Shahid & Moshkov, Mikhail, 2018. "Bi-criteria optimization of decision trees with applications to data analysis," European Journal of Operational Research, Elsevier, vol. 266(2), pages 689-701.
    6. Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
    7. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    8. Martin-Barragan, Belen & Lillo, Rosa & Romo, Juan, 2014. "Interpretable support vector machines for functional data," European Journal of Operational Research, Elsevier, vol. 232(1), pages 146-155.
    9. Carrizosa, Emilio & Martín-Barragán, Belén & Morales, Dolores Romero, 2011. "Detecting relevant variables and interactions in supervised classification," European Journal of Operational Research, Elsevier, vol. 213(1), pages 260-269, August.
    10. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    11. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    12. Rafael Blanquero & Emilio Carrizosa & Pepa Ramírez-Cobo & M. Remedios Sillero-Denamiel, 2021. "A cost-sensitive constrained Lasso," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 121-158, March.
    13. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    14. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Romero Morales, Dolores, 2020. "Sparsity in optimal randomized classification trees," European Journal of Operational Research, Elsevier, vol. 284(1), pages 255-272.
    2. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    3. Benítez-Peña, Sandra & Carrizosa, Emilio & Guerrero, Vanesa & Jiménez-Gamero, M. Dolores & Martín-Barragán, Belén & Molero-Río, Cristina & Ramírez-Cobo, Pepa & Romero Morales, Dolores & Sillero-Denami, 2021. "On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19," European Journal of Operational Research, Elsevier, vol. 295(2), pages 648-663.
    4. Boller, Daniel & Lechner, Michael & Okasa, Gabriel, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Economics Working Paper Series 2104, University of St. Gallen, School of Economics and Political Science.
    5. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    6. Amin, Modhurima Dey & Badruddoza, Syed & McCluskey, Jill J., 2021. "Predicting access to healthful food retailers with machine learning," Food Policy, Elsevier, vol. 99(C).
    7. Martin-Barragan, Belen & Lillo, Rosa & Romo, Juan, 2014. "Interpretable support vector machines for functional data," European Journal of Operational Research, Elsevier, vol. 232(1), pages 146-155.
    8. Daniel Goller & Michael C. Knaus & Michael Lechner & Gabriel Okasa, 2021. "Predicting match outcomes in football by an Ordered Forest estimator," Chapters, in: Ruud H. Koning & Stefan Kesenne (ed.), A Modern Guide to Sports Economics, chapter 22, pages 335-355, Edward Elgar Publishing.
    9. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    10. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    11. Andree,Bo Pieter Johannes & Chamorro Elizondo,Andres Fernando & Kraay,Aart C. & Spencer,Phoebe Girouard & Wang,Dieter, 2020. "Predicting Food Crises," Policy Research Working Paper Series 9412, The World Bank.
    12. Emilio Carrizosa & Vanesa Guerrero & Dolores Romero Morales, 2023. "On mathematical optimization for clustering categories in contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 407-429, June.
    13. Fuat Kaya & Gaurav Mishra & Rosa Francaviglia & Ali Keshavarzi, 2023. "Combining Digital Covariates and Machine Learning Models to Predict the Spatial Variation of Soil Cation Exchange Capacity," Land, MDPI, vol. 12(4), pages 1-20, April.
    14. Mochen Yang & Edward McFowland & Gordon Burtch & Gediminas Adomavicius, 2022. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 138-155, October.
    15. Brunori, Paolo & Hufe, Paul & Mahler, Daniel Gerszon, 2021. "The Roots of Inequality: Estimating Inequality of Opportunity from Regression Trees and Forests," IZA Discussion Papers 14689, Institute of Labor Economics (IZA).
    16. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    17. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    18. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    19. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    20. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:299:y:2022:i:3:p:1045-1054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.