IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v299y2024ics037837742400204x.html
   My bibliography  Save this article

Classification and Regression Tree (CART)-based estimation of soil water content based on meteorological inputs and explorations of hydrodynamics behind

Author

Listed:
  • Wu, Tsung-Hsi
  • Chen, Pei-Yuan
  • Chen, Chien-Chih
  • Chung, Meng-Ju
  • Ye, Zheng-Kai
  • Li, Ming-Hsu

Abstract

In this study, we investigate the feasibility of using the Classification and Regression Tree (CART) algorithm to estimate soil water content (SWC) using commonly available meteorological parameters. We trained and validated CART models using data collected in a grassland terrain in northern Taiwan throughout the year of 2018, with the goal of providing precise information for agricultural irrigation and flood risk assessment. Results indicate the effectiveness of CART in SWC estimation, with error levels acceptable for agricultural purposes. The mean absolute error is less than 4% (v/v) for 53 out of the total 60 models in the 12-fold Time-Series Cross-Validation for SWC at depths of 10, 30, 50, 70, and 100 cm. Furthermore, the effectiveness of meteorological parameters in different sets of time shifting and parameter types are assessed. Our findings reveal that the responsiveness of SWC to parameters derived from precipitation varies with soil depth and season, with SWC dynamics in response to precipitation being more pronounced in shallower layers (≤50 cm) compared to deeper layers (≥70 cm). The influence of precipitation-derived and non-precipitation parameters on SWC dynamics is manifested in their distinct feature-importance characteristics in a CART model. This study highlights the importance of understanding characteristics of rainfall and underlying hydrological dynamics, such as evapotranspiration and soil texture, in order to make accurate SWC predictions using CART. Since CART serves as the basis for a variety of top-performing machines like random forest and gradient-boosted trees, the discoveries from this study can also help estimate SWC with these advanced algorithms. Overall, the results of this study provide practical guidance for refining machine-learning based SWC estimations, contributing to more effective agricultural water management and irrigation strategies.

Suggested Citation

  • Wu, Tsung-Hsi & Chen, Pei-Yuan & Chen, Chien-Chih & Chung, Meng-Ju & Ye, Zheng-Kai & Li, Ming-Hsu, 2024. "Classification and Regression Tree (CART)-based estimation of soil water content based on meteorological inputs and explorations of hydrodynamics behind," Agricultural Water Management, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s037837742400204x
    DOI: 10.1016/j.agwat.2024.108869
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742400204X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Bittelli, 2010. "Measuring Soil Water Potential for Water Management in Agriculture: A Review," Sustainability, MDPI, vol. 2(5), pages 1-26, May.
    2. Lei, Guoqing & Zeng, Wenzhi & Yu, Jin & Huang, Jiesheng, 2023. "A comparison of physical-based and machine learning modeling for soil salt dynamics in crop fields," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Yuting Yang & Gang Mei, 2022. "A Deep Learning-Based Approach for a Numerical Investigation of Soil–Water Vertical Infiltration with Physics-Informed Neural Networks," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
    4. Yu Cai & Wengang Zheng & Xin Zhang & Lili Zhangzhong & Xuzhang Xue, 2019. "Research on soil moisture prediction model based on deep learning," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-19, April.
    5. Yu, Jingxin & Zhang, Xin & Xu, Linlin & Dong, Jing & Zhangzhong, Lili, 2021. "A hybrid CNN-GRU model for predicting soil moisture in maize root zone," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    7. Anastasia Angelaki & Vasiliki Bota & Iraklis Chalkidis, 2023. "Estimation of Hydraulic Parameters from the Soil Water Characteristic Curve," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    8. Pinheiro, Everton Alves Rodrigues & de Jong van Lier, Quirijn & Šimůnek, Jirka, 2019. "The role of soil hydraulic properties in crop water use efficiency: A process-based analysis for some Brazilian scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 364-377.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    2. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    3. Dimitris Bertsimas & Cheol Woo Kim, 2023. "A Prescriptive Machine Learning Approach to Mixed-Integer Convex Optimization," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1225-1241, November.
    4. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    5. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    6. Ikeda, Shunnosuke & Nishimura, Naoki & Sukegawa, Noriyoshi & Takano, Yuichi, 2023. "Prescriptive price optimization using optimal regression trees," Operations Research Perspectives, Elsevier, vol. 11(C).
    7. Carrizosa, Emilio & Ramírez-Ayerbe, Jasone & Romero Morales, Dolores, 2024. "Mathematical optimization modelling for group counterfactual explanations," European Journal of Operational Research, Elsevier, vol. 319(2), pages 399-412.
    8. Davila-Pena, Laura & García-Jurado, Ignacio & Casas-Méndez, Balbina, 2022. "Assessment of the influence of features on a classification problem: An application to COVID-19 patients," European Journal of Operational Research, Elsevier, vol. 299(2), pages 631-641.
    9. Lucas Eduardo Oliveira Aparecido & Pedro Antonio Lorençone & João Antonio Lorençone & Kamila Cunha Meneses & José Reinaldo da Silva Cabral Moraes & Maryzélia Furtado Farias, 2022. "Soil water seasonal and spatial variability in Northeast Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6136-6152, May.
    10. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Morales, Dolores Romero, 2022. "On sparse optimal regression trees," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1045-1054.
    11. Xiao, Xin & Ming, Wenting & Luo, Xuan & Yang, Luyi & Li, Meng & Yang, Pengwu & Ji, Xuan & Li, Yungang, 2024. "Leveraging multisource data for accurate agricultural drought monitoring: A hybrid deep learning model," Agricultural Water Management, Elsevier, vol. 293(C).
    12. Teddy Lazebnik & Tzach Fleischer & Amit Yaniv-Rosenfeld, 2023. "Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks," Sustainability, MDPI, vol. 15(14), pages 1-9, July.
    13. Dong, Liming & Lei, Guoqing & Huang, Jiesheng & Zeng, Wenzhi, 2023. "Improving crop modeling in saline soils by predicting root length density dynamics with machine learning algorithms," Agricultural Water Management, Elsevier, vol. 287(C).
    14. Victor Blanco & Alberto Japón & Justo Puerto, 2022. "Robust optimal classification trees under noisy labels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 155-179, March.
    15. Andreas Dellnitz & Andreas Kleine & Madjid Tavana, 2024. "An integrated data envelopment analysis and regression tree method for new product price estimation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1189-1211, December.
    16. Benítez-Peña, Sandra & Carrizosa, Emilio & Guerrero, Vanesa & Jiménez-Gamero, M. Dolores & Martín-Barragán, Belén & Molero-Río, Cristina & Ramírez-Cobo, Pepa & Romero Morales, Dolores & Sillero-Denami, 2021. "On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19," European Journal of Operational Research, Elsevier, vol. 295(2), pages 648-663.
    17. Emilio Carrizosa & Dolores Romero Morales, 2024. "Guest editorial to the Special Issue on Machine Learning and Mathematical Optimization in TOP-Transactions in Operations Research," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 351-353, October.
    18. Abdul Halim Hamdany & Martin Wijaya & Alfrendo Satyanaga & Harianto Rahardjo & Zhai Qian & Aswin Lim & Jong Kim, 2023. "Numerical Simulation on the Effect of Infiltration and Evapotranspiration on the Residual Slope," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    19. Carrizosa, Emilio & Kurishchenko, Kseniia & Marín, Alfredo & Romero Morales, Dolores, 2022. "Interpreting clusters via prototype optimization," Omega, Elsevier, vol. 107(C).
    20. Piccialli, Veronica & Romero Morales, Dolores & Salvatore, Cecilia, 2024. "Supervised feature compression based on counterfactual analysis," European Journal of Operational Research, Elsevier, vol. 317(2), pages 273-285.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s037837742400204x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.