IDEAS home Printed from https://ideas.repec.org/p/usg/econwp/202104.html
   My bibliography  Save this paper

The Effect of Sport in Online Dating: Evidence from Causal Machine Learning

Author

Listed:
  • Boller, Daniel
  • Lechner, Michael
  • Okasa, Gabriel

Abstract

Online dating emerged as a key platform for human mating. Previous research focused on socio-demographic characteristics to explain human mating in online dating environments, neglecting the commonly recognized relevance of sport. This research investigates the effect of sport activity on human mating by exploiting a unique data set from an online dating platform. Thereby, we leverage recent advances in the causal machine learning literature to estimate the causal effect of sport frequency on the contact chances. We find that for male users, doing sport on a weekly basis increases the probability to receive a first message from a woman by 50%, relatively to not doing sport at all. For female users, we do not find evidence for such an effect. In addition, for male users the effect increases with higher income.

Suggested Citation

  • Boller, Daniel & Lechner, Michael & Okasa, Gabriel, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Economics Working Paper Series 2104, University of St. Gallen, School of Economics and Political Science.
  • Handle: RePEc:usg:econwp:2021:04
    as

    Download full text from publisher

    File URL: http://ux-tauri.unisg.ch/RePEc/usg/econwp/EWP-2104.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    2. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).
    3. Caruso, Raul, 2011. "Crime and sport participation: Evidence from Italian regions over the period 1997–2003," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 40(5), pages 455-463.
    4. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    5. Michael Lechner & Anthony Strittmatter, 2019. "Practical procedures to deal with common support problems in matching estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 193-207, February.
    6. Huang, Haifang & Humphreys, Brad R., 2012. "Sports participation and happiness: Evidence from US microdata," Journal of Economic Psychology, Elsevier, vol. 33(4), pages 776-793.
    7. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    8. Fricke, Hans & Lechner, Michael & Steinmayr, Andreas, 2018. "The effects of incentives to exercise on student performance in college," Economics of Education Review, Elsevier, vol. 66(C), pages 14-39.
    9. Lechner, Michael, 2009. "Long-run labour market and health effects of individual sports activities," Journal of Health Economics, Elsevier, vol. 28(4), pages 839-854, July.
    10. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    11. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    12. Lechner, Michael & Felfe, Christina & Steinmayr, Andreas, 2011. "Sports and Child Development," CEPR Discussion Papers 8523, C.E.P.R. Discussion Papers.
    13. Rooth, Dan-Olof, 2011. "Work out or out of work -- The labor market return to physical fitness and leisure sports activities," Labour Economics, Elsevier, vol. 18(3), pages 399-409, June.
    14. Michael J. Rosenfeld & Reuben J. Thomas & Sonia Hausen, 2019. "Disintermediating your friends: How online dating in the United States displaces other ways of meeting," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(36), pages 17753-17758, September.
    15. David Richter & Jürgen Schupp, 2015. "The SOEP Innovation Sample (SOEP IS)," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 135(3), pages 389-400.
    16. Pfeifer, Christian & Cornelißen, Thomas, 2010. "The impact of participation in sports on educational attainment--New evidence from Germany," Economics of Education Review, Elsevier, vol. 29(1), pages 94-103, February.
    17. Hodler, Roland & Lechner, Michael & Raschky, Paul A., 2020. "Reassessing the Resource Curse using Causal Machine Learning," Economics Working Paper Series 2016, University of St. Gallen, School of Economics and Political Science.
    18. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    19. Gunter J. Hitsch & Ali Hortaçsu & Dan Ariely, 2010. "Matching and Sorting in Online Dating," American Economic Review, American Economic Association, vol. 100(1), pages 130-163, March.
    20. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    21. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    22. Soohyung Lee, 2016. "Effect of Online Dating on Assortative Mating: Evidence from South Korea," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 1120-1139, September.
    23. Brad R. Humphreys & Logan McLeod & Jane E. Ruseski, 2014. "Physical Activity And Health Outcomes: Evidence From Canada," Health Economics, John Wiley & Sons, Ltd., vol. 23(1), pages 33-54, January.
    24. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
    2. Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    2. Daniel Goller & Tamara Harrer & Michael Lechner & Joachim Wolff, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Papers 2106.10141, arXiv.org, revised May 2023.
    3. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    4. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).
    5. Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020. "Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed," Labour Economics, Elsevier, vol. 65(C).
    6. Cabane Charlotte & Lechner Michael, 2015. "Physical Activity of Adults: A Survey of Correlates, Determinants, and Effects," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 235(4-5), pages 376-402, August.
    7. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    8. Strittmatter, Anthony, 2023. "What is the value added by using causal machine learning methods in a welfare experiment evaluation?," Labour Economics, Elsevier, vol. 84(C).
    9. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    10. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    11. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    12. Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
    13. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    14. Tim Pawlowski & Ute Schüttoff & Paul Downward & Michael Lechner, 2018. "Can Sport Really Help to Meet the Millennium Development Goals? Evidence From Children in Peru," Journal of Sports Economics, , vol. 19(4), pages 498-521, May.
    15. Zhexiao Lin & Fang Han, 2022. "On regression-adjusted imputation estimators of the average treatment effect," Papers 2212.05424, arXiv.org, revised Jan 2023.
    16. Gabriel Okasa & Kenneth A. Younge, 2022. "Sample Fit Reliability," Papers 2209.06631, arXiv.org.
    17. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Working Papers hal-03455978, HAL.
    18. Michael Lechner & Paul Downward, 2017. "Heterogeneous sports participation and labour market outcomes in England," Applied Economics, Taylor & Francis Journals, vol. 49(4), pages 335-348, January.
    19. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    20. Charlotte Cabane & Andrew E. Clark, 2015. "Childhood Sporting Activities andAdult Labour-Market Outcome," Annals of Economics and Statistics, GENES, issue 119-120, pages 123-148.

    More about this item

    Keywords

    Online dating; sports economics; big data; causal machine learning; effect heterogeneity; Modified Causal Forest;
    All these keywords.

    JEL classification:

    • J12 - Labor and Demographic Economics - - Demographic Economics - - - Marriage; Marital Dissolution; Family Structure
    • Z29 - Other Special Topics - - Sports Economics - - - Other
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usg:econwp:2021:04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/vwasgch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.