IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v314y2024i1p1-14.html
   My bibliography  Save this article

Optimization with constraint learning: A framework and survey

Author

Listed:
  • Fajemisin, Adejuyigbe O.
  • Maragno, Donato
  • den Hertog, Dick

Abstract

Many real-life optimization problems frequently contain one or more constraints or objectives for which there are no explicit formulae. If however data on feasible and/or infeasible states are available, these data can be used to learn the constraints. The benefits of this approach are clearly seen, however, there is a need for this process to be carried out in a structured manner. This paper, therefore, provides a framework for Optimization with Constraint Learning (OCL) which we believe will help to formalize and direct the process of learning constraints from data. This framework includes the following steps: (i) setup of the conceptual optimization model, (ii) data gathering and preprocessing, (iii) selection and training of predictive models, (iv) resolution of the optimization model, and (v) verification and improvement of the optimization model. We then review the recent OCL literature in light of this framework and highlight current trends, as well as areas for future research.

Suggested Citation

  • Fajemisin, Adejuyigbe O. & Maragno, Donato & den Hertog, Dick, 2024. "Optimization with constraint learning: A framework and survey," European Journal of Operational Research, Elsevier, vol. 314(1), pages 1-14.
  • Handle: RePEc:eee:ejores:v:314:y:2024:i:1:p:1-14
    DOI: 10.1016/j.ejor.2023.04.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723003405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.04.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pawlak, Tomasz P. & Litwiniuk, Bartosz, 2021. "Ellipsoidal one-class constraint acquisition for quadratically constrained programming," European Journal of Operational Research, Elsevier, vol. 293(1), pages 36-49.
    2. Václavík, Roman & Novák, Antonín & Šůcha, Přemysl & Hanzálek, Zdeněk, 2018. "Accelerating the Branch-and-Price Algorithm Using Machine Learning," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1055-1069.
    3. Jiménez-Cordero, Asunción & Morales, Juan Miguel & Pineda, Salvador, 2021. "A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification," European Journal of Operational Research, Elsevier, vol. 293(1), pages 24-35.
    4. Pawlak, Tomasz P. & Krawiec, Krzysztof, 2017. "Automatic synthesis of constraints from examples using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1141-1157.
    5. Stinstra, Erwin & den Hertog, Dick, 2008. "Robust optimization using computer experiments," European Journal of Operational Research, Elsevier, vol. 191(3), pages 816-837, December.
    6. Álinson S. Xavier & Feng Qiu & Shabbir Ahmed, 2021. "Learning to Solve Large-Scale Security-Constrained Unit Commitment Problems," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 739-756, May.
    7. David Bergman & Teng Huang & Philip Brooks & Andrea Lodi & Arvind U. Raghunathan, 2022. "JANOS: An Integrated Predictive and Prescriptive Modeling Framework," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 807-816, March.
    8. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2017. "Enhancing two-stage modelling methodology for loss given default with support vector machines," European Journal of Operational Research, Elsevier, vol. 263(2), pages 679-689.
    9. De Angelis, Vanda & Felici, Giovanni & Impelluso, Paolo, 2003. "Integrating simulation and optimisation in health care centre management," European Journal of Operational Research, Elsevier, vol. 150(1), pages 101-114, October.
    10. Crombecq, K. & Laermans, E. & Dhaene, T., 2011. "Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling," European Journal of Operational Research, Elsevier, vol. 214(3), pages 683-696, November.
    11. den Hertog, Dick & Stehouwer, Peter, 2002. "Optimizing color picture tubes by high-cost nonlinear programming," European Journal of Operational Research, Elsevier, vol. 140(2), pages 197-211, July.
    12. Han, Biao & Shang, Chao & Huang, Dexian, 2021. "Multiple kernel learning-aided robust optimization: Learning algorithm, computational tractability, and usage in multi-stage decision-making," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1004-1018.
    13. Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
    14. repec:inm:orijoo:v:3:y:2021:i:2:p:200-226 is not listed on IDEAS
    15. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    16. Baldomero-Naranjo, Marta & Martínez-Merino, Luisa I. & Rodríguez-Chía, Antonio M., 2020. "Tightening big Ms in integer programming formulations for support vector machines with ramp loss," European Journal of Operational Research, Elsevier, vol. 286(1), pages 84-100.
    17. Chi, Hoi-Ming & Ersoy, Okan K. & Moskowitz, Herbert & Ward, Jim, 2007. "Modeling and optimizing a vendor managed replenishment system using machine learning and genetic algorithms," European Journal of Operational Research, Elsevier, vol. 180(1), pages 174-193, July.
    18. Balaji Padmanabhan & Alexander Tuzhilin, 2003. "On the Use of Optimization for Data Mining: Theoretical Interactions and eCRM Opportunities," Management Science, INFORMS, vol. 49(10), pages 1327-1343, October.
    19. Dimitris Bertsimas & Allison O’Hair & Stephen Relyea & John Silberholz, 2016. "An Analytics Approach to Designing Combination Chemotherapy Regimens for Cancer," Management Science, INFORMS, vol. 62(5), pages 1511-1531, May.
    20. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    21. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    22. Hoffmann, A.L. & Siem, A.Y.D. & den Hertog, D. & Kaanders, J.H.A.M. & Huizenga, H., 2008. "Convex reformulation of biologically-based multi-crtiteria intensity-modulated radiation therapy optimization including fractionation effects," Other publications TiSEM a5430d1f-6b88-43ba-af32-6, Tilburg University, School of Economics and Management.
    23. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keliang Wang & Leonardo Lozano & Carlos Cardonha & David Bergman, 2023. "Optimizing over an Ensemble of Trained Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 652-674, May.
    2. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    3. Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    4. Tsay, Calvin, 2024. "A Quantile Neural Network Framework for Twostage Stochastic Optimization," DES - Working Papers. Statistics and Econometrics. WS 43773, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Fang, Chao & Han, Zonglei & Wang, Wei & Zio, Enrico, 2023. "Routing UAVs in landslides Monitoring: A neural network heuristic for team orienteering with mandatory visits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    6. Bouška, Michal & Šůcha, Přemysl & Novák, Antonín & Hanzálek, Zdeněk, 2023. "Deep learning-driven scheduling algorithm for a single machine problem minimizing the total tardiness," European Journal of Operational Research, Elsevier, vol. 308(3), pages 990-1006.
    7. Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.
    8. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    9. Max Biggs & Rim Hariss & Georgia Perakis, 2023. "Constrained optimization of objective functions determined from random forests," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 397-415, February.
    10. Long He & Sheng Liu & Zuo‐Jun Max Shen, 2022. "Smart urban transport and logistics: A business analytics perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3771-3787, October.
    11. Yinchu Zhu & Ilya O. Ryzhov, 2022. "Optimal data-driven hiring with equity for underrepresented groups," Papers 2206.09300, arXiv.org.
    12. Potoniec, Jedrzej & Sroka, Daniel & Pawlak, Tomasz P., 2022. "Continuous discovery of Causal nets for non-stationary business processes using the Online Miner," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1304-1320.
    13. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pasdeloup, Bastien & Meyer, Patrick, 2023. "Learning to select operators in meta-heuristics: An integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1296-1330.
    14. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    15. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    16. Karl Martin & Parag Chitalia & Murugan Pugalenthi & K. Raghava Rau & Sudeep Maity & Rahul Kumar & Rohit Saksena & Randhir Hebbar & Mahesh Krishnan & Ganesh Hegde & Chandrasekhar Kesanapally & Tejinder, 2014. "Dell’s Channel Transformation: Leveraging Operations Research to Unleash Potential Across the Value Chain," Interfaces, INFORMS, vol. 44(1), pages 55-69, February.
    17. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    18. Meng Qi & Ying Cao & Zuo-Jun (Max) Shen, 2022. "Distributionally Robust Conditional Quantile Prediction with Fixed Design," Management Science, INFORMS, vol. 68(3), pages 1639-1658, March.
    19. Ben-Tal, A. & den Hertog, D., 2011. "Immunizing Conic Quadratic Optimization Problems Against Implementation Errors," Discussion Paper 2011-060, Tilburg University, Center for Economic Research.
    20. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:314:y:2024:i:1:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.