IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v28y2020i2d10.1007_s11750-020-00563-0.html
   My bibliography  Save this article

Distance geometry and data science

Author

Listed:
  • Leo Liberti

    (LIX CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

Abstract

Data are often represented as graphs. Many common tasks in data science are based on distances between entities. While some data science methodologies natively take graphs as their input, there are many more that take their input in vectorial form. In this survey, we discuss the fundamental problem of mapping graphs to vectors, and its relation with mathematical programming. We discuss applications, solution methods, dimensional reduction techniques, and some of their limits. We then present an application of some of these ideas to neural networks, showing that distance geometry techniques can give competitive performance with respect to more traditional graph-to-vector mappings.

Suggested Citation

  • Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
  • Handle: RePEc:spr:topjnl:v:28:y:2020:i:2:d:10.1007_s11750-020-00563-0
    DOI: 10.1007/s11750-020-00563-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-020-00563-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-020-00563-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vach, Werner & Ro[ss]ner, Reinhard & Schumacher, Martin, 1996. "Neural networks and logistic regression: Part II," Computational Statistics & Data Analysis, Elsevier, vol. 21(6), pages 683-701, June.
    2. S. Lehmann & L. K. Hansen, 2007. "Deterministic modularity optimization," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(1), pages 83-88, November.
    3. Edoardo Amaldi & Leo Liberti & Francesco Maffioli & Nelson Maculan, 2009. "Edge-swapping algorithms for the minimum fundamental cycle basis problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(2), pages 205-233, May.
    4. Ky Vu & Pierre-Louis Poirion & Leo Liberti, 2018. "Random Projections for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1051-1071, November.
    5. Douglas S. Gonçalves & Antonio Mucherino & Carlile Lavor & Leo Liberti, 2017. "Recent advances on the interval distance geometry problem," Journal of Global Optimization, Springer, vol. 69(3), pages 525-545, November.
    6. Antonio Mucherino & Carlile Lavor & Leo Liberti & Nelson Maculan, 2012. "The Discretizable Molecular Distance Geometry Problem," Post-Print hal-00756940, HAL.
    7. Carlile Lavor & Leo Liberti & Antonio Mucherino, 2013. "The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances," Journal of Global Optimization, Springer, vol. 56(3), pages 855-871, July.
    8. Antonio Mucherino & Carlile Lavor & Leo Liberti, 2012. "The Discretizable Distance Geometry Problem," Post-Print hal-00756943, HAL.
    9. Carlile Lavor & Leo Liberti & Nelson Maculan & Antonio Mucherino, 2012. "The discretizable molecular distance geometry problem," Computational Optimization and Applications, Springer, vol. 52(1), pages 115-146, May.
    10. Leo Liberti & Fabrizio Marinelli, 2014. "Mathematical programming: Turing completeness and applications to software analysis," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 82-104, July.
    11. G. Xu & S. Tsoka & L. G. Papageorgiou, 2007. "Finding community structures in complex networks using mixed integer optimisation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 231-239, November.
    12. Schumacher, Martin & Ro[ss]ner, Reinhard & Vach, Werner, 1996. "Neural networks and logistic regression: Part I," Computational Statistics & Data Analysis, Elsevier, vol. 21(6), pages 661-682, June.
    13. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    14. Luca Mencarelli & Youcef Sahraoui & Leo Liberti, 2017. "A multiplicative weights update algorithm for MINLP," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 31-86, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    2. Emilio Carrizosa & Dolores Romero Morales, 2024. "Guest editorial to the Special Issue on Machine Learning and Mathematical Optimization in TOP-Transactions in Operations Research," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 351-353, October.
    3. Maurizio Bruglieri & Roberto Cordone & Leo Liberti, 2022. "Maximum feasible subsystems of distance geometry constraints," Journal of Global Optimization, Springer, vol. 83(1), pages 29-47, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavor, Carlile & Souza, Michael & Carvalho, Luiz M. & Gonçalves, Douglas S. & Mucherino, Antonio, 2021. "Improving the sampling process in the interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    2. Felipe Fidalgo & Douglas S. Gonçalves & Carlile Lavor & Leo Liberti & Antonio Mucherino, 2018. "A symmetry-based splitting strategy for discretizable distance geometry problems," Journal of Global Optimization, Springer, vol. 71(4), pages 717-733, August.
    3. Simon J. L. Billinge & Phillip M. Duxbury & Douglas S. Gonçalves & Carlile Lavor & Antonio Mucherino, 2018. "Recent results on assigned and unassigned distance geometry with applications to protein molecules and nanostructures," Annals of Operations Research, Springer, vol. 271(1), pages 161-203, December.
    4. Douglas S. Gonçalves & Antonio Mucherino & Carlile Lavor & Leo Liberti, 2017. "Recent advances on the interval distance geometry problem," Journal of Global Optimization, Springer, vol. 69(3), pages 525-545, November.
    5. Virginia Costa & Antonio Mucherino & Carlile Lavor & Andrea Cassioli & Luiz Carvalho & Nelson Maculan, 2014. "Discretization orders for protein side chains," Journal of Global Optimization, Springer, vol. 60(2), pages 333-349, October.
    6. Farid Alizadeh & Douglas Gonçalves & Nathan Krislock & Leo Liberti, 2018. "Preface: Special issue dedicated to Distance Geometry," Journal of Global Optimization, Springer, vol. 72(1), pages 1-4, September.
    7. Phil Duxbury & Carlile Lavor & Leo Liberti & Luiz Leduino Salles-Neto, 2022. "Unassigned distance geometry and molecular conformation problems," Journal of Global Optimization, Springer, vol. 83(1), pages 73-82, May.
    8. Maurizio Bruglieri & Roberto Cordone & Leo Liberti, 2022. "Maximum feasible subsystems of distance geometry constraints," Journal of Global Optimization, Springer, vol. 83(1), pages 29-47, May.
    9. Bradley Worley & Florent Delhommel & Florence Cordier & Thérèse E. Malliavin & Benjamin Bardiaux & Nicolas Wolff & Michael Nilges & Carlile Lavor & Leo Liberti, 2018. "Tuning interval Branch-and-Prune for protein structure determination," Journal of Global Optimization, Springer, vol. 72(1), pages 109-127, September.
    10. Jiangping Gao & Xiangyang Shi & Linghui Li & Ziqiang Zhou & Junfeng Wang, 2022. "Assessment of Landslide Susceptibility Using Different Machine Learning Methods in Longnan City, China," Sustainability, MDPI, vol. 14(24), pages 1-26, December.
    11. Martello, Silvano & Pinto Paixão, José M., 2012. "A look at the past and present of optimization – An editorial," European Journal of Operational Research, Elsevier, vol. 219(3), pages 638-640.
    12. Zhang, G. Peter & Keil, Mark & Rai, Arun & Mann, Joan, 2003. "Predicting information technology project escalation: A neural network approach," European Journal of Operational Research, Elsevier, vol. 146(1), pages 115-129, April.
    13. Reggiani, Aura & Nijkamp, Peter & Nobilio, Lucia, 1997. "Spatial modal patterns in European freight transport networks: results of neurocomputing and logit models," Serie Research Memoranda 0029, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    14. H. Pourghasemi & H. Moradi & S. Fatemi Aghda, 2013. "Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 749-779, October.
    15. Rabiu Muazu Musa & Anwar P. P. Abdul Majeed & Zahari Taha & Siow Wee Chang & Ahmad Fakhri Ab. Nasir & Mohamad Razali Abdullah, 2019. "A machine learning approach of predicting high potential archers by means of physical fitness indicators," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-12, January.
    16. Leo Liberti & Benedetto Manca, 2022. "Side-constrained minimum sum-of-squares clustering: mathematical programming and random projections," Journal of Global Optimization, Springer, vol. 83(1), pages 83-118, May.
    17. Manojit Chattopadhyay & Subrata Kumar Mitra, 2017. "Applicability and effectiveness of classifications models for achieving the twin objectives of growth and outreach of microfinance institutions," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 451-474, December.
    18. Gaudart, Jean & Giusiano, Bernard & Huiart, Laetitia, 2004. "Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 547-570, January.
    19. Simon J. L. Billinge & Phillip M. Duxbury & Douglas S. Gonçalves & Carlile Lavor & Antonio Mucherino, 2016. "Assigned and unassigned distance geometry: applications to biological molecules and nanostructures," 4OR, Springer, vol. 14(4), pages 337-376, December.
    20. Alex Nosenko & Yuan Cheng & Haiquan Chen, 2023. "Password and Passphrase Guessing with Recurrent Neural Networks," Information Systems Frontiers, Springer, vol. 25(2), pages 549-565, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:28:y:2020:i:2:d:10.1007_s11750-020-00563-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.