Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-024-06673-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhen Zhang & Min Liu & Yen Joe Tan & Fabian Walter & Siming He & Małgorzata Chmiel & Jinrong Su, 2024. "Landslide hazard cascades can trigger earthquakes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Faraz S. Tehrani & Michele Calvello & Zhongqiang Liu & Limin Zhang & Suzanne Lacasse, 2022. "Machine learning and landslide studies: recent advances and applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1197-1245, November.
- Qing Ling & Qin Zhang & Jing Zhang & Lingjie Kong & Weiqi Zhang & Li Zhu, 2021. "Prediction of landslide displacement using multi-kernel extreme learning machine and maximum information coefficient based on variational mode decomposition: a case study in Shaanxi, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 925-946, August.
- Arunava Ray & Vikash Kumar & Amit Kumar & Rajesh Rai & Manoj Khandelwal & T. N. Singh, 2020. "Stability prediction of Himalayan residual soil slope using artificial neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3523-3540, September.
- Junjie Ji & Yongzhang Zhou & Qiuming Cheng & Shoujun Jiang & Shiting Liu, 2023. "Landslide Susceptibility Mapping Based on Deep Learning Algorithms Using Information Value Analysis Optimization," Land, MDPI, vol. 12(6), pages 1-22, May.
- A. Vallet & D. Varron & C. Bertrand & O. Fabbri & J. Mudry, 2016. "A multi-dimensional statistical rainfall threshold for deep landslides based on groundwater recharge and support vector machines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 821-849, November.
- Israr Ullah & Bilal Aslam & Syed Hassan Iqbal Ahmad Shah & Aqil Tariq & Shujing Qin & Muhammad Majeed & Hans-Balder Havenith, 2022. "An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping," Land, MDPI, vol. 11(8), pages 1-20, August.
- Juan Cao & Zhao Zhang & Jie Du & Liangliang Zhang & Yun Song & Geng Sun, 2020. "Multi-geohazards susceptibility mapping based on machine learning—a case study in Jiuzhaigou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 851-871, July.
- Shaohan Zhang & Shucheng Tan & Jinxuan Zhou & Yongqi Sun & Duanyu Ding & Jun Li, 2023. "Geological Disaster Susceptibility Evaluation of a Random-Forest-Weighted Deterministic Coefficient Model," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
- Langping Li & Hengxing Lan, 2020. "Integration of Spatial Probability and Size in Slope-Unit-Based Landslide Susceptibility Assessment: A Case Study," IJERPH, MDPI, vol. 17(21), pages 1-17, November.
- Guilherme Garcia Oliveira & Luis Fernando Chimelo Ruiz & Laurindo Antonio Guasselli & Claus Haetinger, 2019. "Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1049-1073, November.
- Zian Lin & Xiyan Sun & Yuanfa Ji, 2022. "Landslide Displacement Prediction Based on Time Series Analysis and Double-BiLSTM Model," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
- Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
- Qianqian Wang & Dongchuan Wang & Yong Huang & Zhiheng Wang & Lihui Zhang & Qiaozhen Guo & Wei Chen & Wengang Chen & Mengqin Sang, 2015. "Landslide Susceptibility Mapping Based on Selected Optimal Combination of Landslide Predisposing Factors in a Large Catchment," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shaohan Zhang & Shucheng Tan & Yongqi Sun & Duanyu Ding & Wei Yang, 2024. "Risk Mapping of Geological Hazards in Plateau Mountainous Areas Based on Multisource Remote Sensing Data Extraction and Machine Learning (Fuyuan, China)," Land, MDPI, vol. 13(9), pages 1-25, August.
- Gongfa Chen & Wei Deng & Mansheng Lin & Jianbin Lv, 2023. "Slope stability analysis based on convolutional neural network and digital twin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1427-1443, September.
- Batmyagmar Dashbold & L. Sebastian Bryson & Matthew M. Crawford, 2023. "Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 235-265, March.
- Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
- Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
- Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
- Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
- Jingbo Sun & Shengwu Qin & Shuangshuang Qiao & Yang Chen & Gang Su & Qiushi Cheng & Yanqing Zhang & Xu Guo, 2021. "Exploring the impact of introducing a physical model into statistical methods on the evaluation of regional scale debris flow susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 881-912, March.
- Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
- Fan Yang & Xiaozhi Men & Yangsheng Liu & Huigeng Mao & Yingnan Wang & Li Wang & Xiran Zhou & Chong Niu & Xiao Xie, 2023. "Estimation of Landslide and Mudslide Susceptibility with Multi-Modal Remote Sensing Data and Semantics: The Case of Yunnan Mountain Area," Land, MDPI, vol. 12(10), pages 1-15, October.
- Esteban Bravo-López & Tomás Fernández Del Castillo & Chester Sellers & Jorge Delgado-García, 2023. "Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods," Land, MDPI, vol. 12(6), pages 1-28, May.
- Chong Niu & Kebo Ma & Xiaoyong Shen & Xiaoming Wang & Xiao Xie & Lin Tan & Yong Xue, 2023. "Attention-Enhanced Region Proposal Networks for Multi-Scale Landslide and Mudslide Detection from Optical Remote Sensing Images," Land, MDPI, vol. 12(2), pages 1-12, January.
- Asad Aziz & Muhammad Mushahid Anwar & Muhammad Majeed & Sammer Fatima & Syed Shajee Mehdi & Wali Muhammad Mangrio & Amine Elbouzidi & Muhammad Abdullah & Shadab Shaukat & Nafeesa Zahid & Eman A. Mahmo, 2023. "Quantifying Landscape and Social Amenities as Ecosystem Services in Rapidly Changing Peri-Urban Landscape," Land, MDPI, vol. 12(2), pages 1-12, February.
- Francesco Fusco & Massimiliano Bordoni & Rita Tufano & Valerio Vivaldi & Claudia Meisina & Roberto Valentino & Marco Bittelli & Pantaleone De Vita, 2022. "Hydrological regimes in different slope environments and implications on rainfall thresholds triggering shallow landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 907-939, October.
- Okoli Jude Emeka & Haslinda Nahazanan & Bahareh Kalantar & Zailani Khuzaimah & Ojogbane Success Sani, 2021. "Evaluation of the Effect of Hydroseeded Vegetation for Slope Reinforcement," Land, MDPI, vol. 10(10), pages 1-23, September.
- Fhatuwani Sengani & François Mulenga, 2020. "Application of Limit Equilibrium Analysis and Numerical Modeling in a Case of Slope Instability," Sustainability, MDPI, vol. 12(21), pages 1-33, October.
- Yuting Liu & Giordano Teza & Lorenzo Nava & Zhilu Chang & Min Shang & Debing Xiong & Simonetta Cola, 2024. "Deformation evaluation and displacement forecasting of baishuihe landslide after stabilization based on continuous wavelet transform and deep learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9649-9673, September.
- Lu Fang & Qian Wang & Jianping Yue & Yin Xing, 2023. "Analysis of Optimal Buffer Distance for Linear Hazard Factors in Landslide Susceptibility Prediction," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
- Zhihua Yang & Yuming Wu & Changbao Guo & Ximao Mai, 2024. "Construction of a Joint Newmark–Runout Model for Seismic Landslide Risk Identification: A Case Study in the Eastern Tibetan Plateau," Land, MDPI, vol. 13(11), pages 1-20, November.
- Mohammad Mehrabi, 2022. "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 901-937, March.
More about this item
Keywords
Landslide; Prediction; Artificial intelligent; Geology;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:13:d:10.1007_s11069-024-06673-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.