IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i13d10.1007_s11069-024-06673-3.html
   My bibliography  Save this article

Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence

Author

Listed:
  • Xiang Zhang

    (China University of Geosciences
    Hubei Luojia Laboratory
    SongShan Laboratory)

  • Minghui Zhang

    (China University of Geosciences
    Hubei Luojia Laboratory
    SongShan Laboratory)

  • Xin Liu

    (China University of Geosciences
    Hubei Luojia Laboratory
    SongShan Laboratory)

  • Berhanu Keno Terfa

    (Addis Ababa University)

  • Won-Ho Nam

    (Hankyong National University)

  • Xihui Gu

    (China University of Geosciences
    Centre for Severe Weather and Climate and Hydro-geological Hazards
    University of Oxford)

  • Xu Zhang

    (China University of Geosciences
    Hubei Luojia Laboratory
    SongShan Laboratory)

  • Chao Wang

    (Wuhan University)

  • Jian Yang

    (Information Engineering University)

  • Peng Wang

    (GAEA Space Time Co., Ltd)

  • Chenghong Hu

    (AutoNavi Software Co., Ltd)

  • Wenkui Wu

    (China University of Geosciences)

  • Nengcheng Chen

    (China University of Geosciences
    Hubei Luojia Laboratory)

Abstract

Geological disasters such as landslide, debris flow and collapse are major natural disasters faced by both China and the world, which seriously threaten people’s lives, property security and the socio-economic development. Although the method of using the paradigm of traditional mathematical statistics and physical model to predict the low-probability events of geological disasters have been developed for decades, the difficulty of accurate prediction still remains significant, which is recognized as a major and urgent scientific challenge in the field of Earth science. Artificial intelligence is an important driving force for a new round of scientific and technological revolution and industrial transformation. However, how to systematically establish the AI prediction paradigm for low-probability events of geological disasters and deeply coupled with the physical mechanisms of geological disaster evolution and AI learning models still remains as a scientific bottleneck at the intersection of Earth science and information science. In order to clarify the latest research progress of AI prediction of geological disasters such as landslide, collapse and debris flow, this paper first quantifies the current status of global geological disasters and the urgency of prediction, and then summarizes the overall methodology of AI prediction of geological disasters. In particular, prediction feature selection, data set collection and AI prediction models have been detailly reviewed. Moreover, this review discussed the approaches in establishing the physical-informed AI model for higher accurate, robust, and explainable prediction performance. Subsequently, this paper summarizes the recent research achievements of AI prediction for landslide, collapse, and debris flow. Based on these progresses, we also analyzed the existing problems in the field of AI prediction of geological disasters, and indicated the key directions of AI prediction of geological disasters in the future. This review work is believed to be a critical guidance for future intelligent prediction on the severe geological disasters.

Suggested Citation

  • Xiang Zhang & Minghui Zhang & Xin Liu & Berhanu Keno Terfa & Won-Ho Nam & Xihui Gu & Xu Zhang & Chao Wang & Jian Yang & Peng Wang & Chenghong Hu & Wenkui Wu & Nengcheng Chen, 2024. "Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11485-11525, October.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:13:d:10.1007_s11069-024-06673-3
    DOI: 10.1007/s11069-024-06673-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06673-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06673-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Cao & Zhao Zhang & Jie Du & Liangliang Zhang & Yun Song & Geng Sun, 2020. "Multi-geohazards susceptibility mapping based on machine learning—a case study in Jiuzhaigou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 851-871, July.
    2. Zhen Zhang & Min Liu & Yen Joe Tan & Fabian Walter & Siming He & Małgorzata Chmiel & Jinrong Su, 2024. "Landslide hazard cascades can trigger earthquakes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Faraz S. Tehrani & Michele Calvello & Zhongqiang Liu & Limin Zhang & Suzanne Lacasse, 2022. "Machine learning and landslide studies: recent advances and applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1197-1245, November.
    4. Qing Ling & Qin Zhang & Jing Zhang & Lingjie Kong & Weiqi Zhang & Li Zhu, 2021. "Prediction of landslide displacement using multi-kernel extreme learning machine and maximum information coefficient based on variational mode decomposition: a case study in Shaanxi, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 925-946, August.
    5. Shaohan Zhang & Shucheng Tan & Jinxuan Zhou & Yongqi Sun & Duanyu Ding & Jun Li, 2023. "Geological Disaster Susceptibility Evaluation of a Random-Forest-Weighted Deterministic Coefficient Model," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    6. Arunava Ray & Vikash Kumar & Amit Kumar & Rajesh Rai & Manoj Khandelwal & T. N. Singh, 2020. "Stability prediction of Himalayan residual soil slope using artificial neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3523-3540, September.
    7. Junjie Ji & Yongzhang Zhou & Qiuming Cheng & Shoujun Jiang & Shiting Liu, 2023. "Landslide Susceptibility Mapping Based on Deep Learning Algorithms Using Information Value Analysis Optimization," Land, MDPI, vol. 12(6), pages 1-22, May.
    8. A. Vallet & D. Varron & C. Bertrand & O. Fabbri & J. Mudry, 2016. "A multi-dimensional statistical rainfall threshold for deep landslides based on groundwater recharge and support vector machines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 821-849, November.
    9. Langping Li & Hengxing Lan, 2020. "Integration of Spatial Probability and Size in Slope-Unit-Based Landslide Susceptibility Assessment: A Case Study," IJERPH, MDPI, vol. 17(21), pages 1-17, November.
    10. Guilherme Garcia Oliveira & Luis Fernando Chimelo Ruiz & Laurindo Antonio Guasselli & Claus Haetinger, 2019. "Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1049-1073, November.
    11. Israr Ullah & Bilal Aslam & Syed Hassan Iqbal Ahmad Shah & Aqil Tariq & Shujing Qin & Muhammad Majeed & Hans-Balder Havenith, 2022. "An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping," Land, MDPI, vol. 11(8), pages 1-20, August.
    12. Zian Lin & Xiyan Sun & Yuanfa Ji, 2022. "Landslide Displacement Prediction Based on Time Series Analysis and Double-BiLSTM Model," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    13. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    14. Qianqian Wang & Dongchuan Wang & Yong Huang & Zhiheng Wang & Lihui Zhang & Qiaozhen Guo & Wei Chen & Wengang Chen & Mengqin Sang, 2015. "Landslide Susceptibility Mapping Based on Selected Optimal Combination of Landslide Predisposing Factors in a Large Catchment," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gongfa Chen & Wei Deng & Mansheng Lin & Jianbin Lv, 2023. "Slope stability analysis based on convolutional neural network and digital twin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1427-1443, September.
    2. Shaohan Zhang & Shucheng Tan & Yongqi Sun & Duanyu Ding & Wei Yang, 2024. "Risk Mapping of Geological Hazards in Plateau Mountainous Areas Based on Multisource Remote Sensing Data Extraction and Machine Learning (Fuyuan, China)," Land, MDPI, vol. 13(9), pages 1-25, August.
    3. Batmyagmar Dashbold & L. Sebastian Bryson & Matthew M. Crawford, 2023. "Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 235-265, March.
    4. Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
    5. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    6. Haipeng Zhou & Chenglin Mu & Bo Yang & Gang Huang & Jinpeng Hong, 2025. "Evaluating Landslide Hazard in Western Sichuan: Integrating Rainfall and Geospatial Factors Using a Coupled Information Value–Geographic Logistic Regression Model," Sustainability, MDPI, vol. 17(4), pages 1-30, February.
    7. Derly Gómez & Edwin F. García & Edier Aristizábal, 2023. "Spatial and temporal landslide distributions using global and open landslide databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 25-55, May.
    8. Yiru Jia & Jifu Liu & Lanlan Guo & Zhifei Deng & Jiaoyang Li & Hao Zheng, 2021. "Locomotion of Slope Geohazards Responding to Climate Change in the Qinghai-Tibetan Plateau and Its Adjacent Regions," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    9. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    10. Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    11. Mustafa Kamal & Baolei Zhang & Jianfei Cao & Xin Zhang & Jun Chang, 2022. "Comparative Study of Artificial Neural Network and Random Forest Model for Susceptibility Assessment of Landslides Induced by Earthquake in the Western Sichuan Plateau, China," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    12. Mohib Ullah & Bingzhe Tang & Wenchao Huangfu & Dongdong Yang & Yingdong Wei & Haijun Qiu, 2024. "Machine Learning-Driven Landslide Susceptibility Mapping in the Himalayan China–Pakistan Economic Corridor Region," Land, MDPI, vol. 13(7), pages 1-22, July.
    13. Xiao-yan Huang & Li He & Hua-sheng Zhao & Ying Huang & Yu-shuang Wu, 2021. "Prediction model based on the Laplacian eigenmap method combined with a random forest algorithm for rainstorm satellite images during the first annual rainy season in South China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 331-353, May.
    14. Chi Yang & Jinghan Wang & Shuyi Li & Ruihan Xiong & Xiaobo Li & Lin Gao & Xu Guo & Chuanming Ma & Hanxiang Xiong & Yang Qiu, 2024. "Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River Valley in Yongding, China," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    15. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    16. Jinming Zhang & Jianxi Qian & Yuefeng Lu & Xueyuan Li & Zhenqi Song, 2024. "Study on Landslide Susceptibility Based on Multi-Model Coupling: A Case Study of Sichuan Province, China," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    17. Mária Barančoková & Matej Šošovička & Peter Barančok & Peter Barančok, 2021. "Predictive Modelling of Landslide Susceptibility in the Western Carpathian Flysch Zone," Land, MDPI, vol. 10(12), pages 1-28, December.
    18. Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
    19. Edris Alam & Fahim Sufi & Abu Reza Md. Towfiqul Islam, 2023. "A Scenario-Based Case Study: Using AI to Analyze Casualties from Landslides in Chittagong Metropolitan Area, Bangladesh," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    20. Qing Liu & Tingting Wu & Yahong Deng & Zhiheng Liu, 2023. "SE-YOLOv7 Landslide Detection Algorithm Based on Attention Mechanism and Improved Loss Function," Land, MDPI, vol. 12(8), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:13:d:10.1007_s11069-024-06673-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.