Stability prediction of Himalayan residual soil slope using artificial neural network
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-020-04141-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- P. Singh & A. Wasnik & Ashutosh Kainthola & M. Sazid & T. Singh, 2013. "The stability of road cut cliff face along SH-121: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 497-507, September.
- P. Lu & M. Rosenbaum, 2003. "Artificial Neural Networks and Grey Systems for the Prediction of Slope Stability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 383-398, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mfoniso U. Aka & Moses M. M. Ekpa & Christopher I. Effiong & Azuanamibebi D. Osu & Johnson C. Ibuot, 2022. "Integration Of Seismic Refraction And Laboratory Test Techniques For Slope Stability Analysis, South-South, Nigeria," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 6(1), pages 50-55, February.
- Xiang Zhang & Minghui Zhang & Xin Liu & Berhanu Keno Terfa & Won-Ho Nam & Xihui Gu & Xu Zhang & Chao Wang & Jian Yang & Peng Wang & Chenghong Hu & Wenkui Wu & Nengcheng Chen, 2024. "Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11485-11525, October.
- Ding, Jiayi & Zhou, Jianfang & Cai, Wei, 2023. "An efficient variable selection-based Kriging model method for the reliability analysis of slopes with spatially variable soils," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Gongfa Chen & Wei Deng & Mansheng Lin & Jianbin Lv, 2023. "Slope stability analysis based on convolutional neural network and digital twin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1427-1443, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiuzhen Li & Jiming Kong & Zhenyu Wang, 2012. "Landslide displacement prediction based on combining method with optimal weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 635-646, March.
- Liulei Bao & Guangcheng Zhang & Xinli Hu & Shuangshuang Wu & Xiangdong Liu, 2021. "Stage Division of Landslide Deformation and Prediction of Critical Sliding Based on Inverse Logistic Function," Energies, MDPI, vol. 14(4), pages 1-24, February.
- He Jia & Sherong Zhang & Chao Wang & Xiaohua Wang & Zhonggang Ma & Yaosheng Tan, 2023. "MSC-1DCNN-based homogeneous slope stability state prediction method integrated with empirical data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 729-753, August.
- Jamil Amanollahi & Shahram Kaboodvandpour & Hiva Majidi, 2017. "Evaluating the accuracy of ANN and LR models to estimate the water quality in Zarivar International Wetland, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1511-1527, February.
- Shakti Suman & S. Z. Khan & S. K. Das & S. K. Chand, 2016. "Slope stability analysis using artificial intelligence techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 727-748, November.
- T. N. Singh & Rajbal Singh & Bhoop Singh & L. K. Sharma & Rajesh Singh & M. K. Ansari, 2016. "Investigations and stability analyses of Malin village landslide of Pune district, Maharashtra, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2019-2030, April.
- Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
- Chonghao Zhu & Jianjing Zhang & Yang Liu & Donghua Ma & Mengfang Li & Bo Xiang, 2020. "Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: a case study in Sichuan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 173-204, January.
- Zaiwu Gong & Caiqin Chen & Xinming Ge, 2014. "Risk prediction of low temperature in Nanjing city based on grey weighted Markov model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1159-1180, March.
- Sina Shaffiee Haghshenas & Sami Shaffiee Haghshenas & Zong Woo Geem & Tae-Hyung Kim & Reza Mikaeil & Luigi Pugliese & Antonello Troncone, 2021. "Application of Harmony Search Algorithm to Slope Stability Analysis," Land, MDPI, vol. 10(11), pages 1-12, November.
- Sami Ullah & Muhib Ullah Khan & Gohar Rehman, 2020. "A Brief Review of the Slope Stability Analysis Methods," Geological Behavior (GBR), Zibeline International Publishing, vol. 4(2), pages 73-77:4, May.
- Zaobao Liu & Jianfu Shao & Weiya Xu & Hongjie Chen & Yu Zhang, 2014. "An extreme learning machine approach for slope stability evaluation and prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 787-804, September.
- Min-Yuan Cheng & Nhat-Duc Hoang, 2015. "Typhoon-induced slope collapse assessment using a novel bee colony optimized support vector classifier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1961-1978, September.
- Leilei Liu & Guoyan Zhao & Weizhang Liang, 2023. "Slope Stability Prediction Using k -NN-Based Optimum-Path Forest Approach," Mathematics, MDPI, vol. 11(14), pages 1-31, July.
- Dattatray Khamkar & Sainath Aher & Praveen Gawali & Sumedh Mhaske, 2022. "Investigating probable causes for predicting catastrophic landslides along NH-60 excavated through semi-arid basaltic terrain of Chandanapuri Ghat, Maharashtra, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2362-2386, February.
- Daxing Lei & Yaoping Zhang & Zhigang Lu & Hang Lin & Zheyuan Jiang, 2024. "Predicting Factor of Safety of Slope Using an Improved Support Vector Machine Regression Model," Mathematics, MDPI, vol. 12(20), pages 1-17, October.
- Yukun Yang & Wei Zhou & Izhar Mithal Jiskani & Xiang Lu & Zhiming Wang & Boyu Luan, 2023. "Slope Stability Prediction Method Based on Intelligent Optimization and Machine Learning Algorithms," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
- Paraskevas Tsangaratos & Andreas Benardos, 2014. "Estimating landslide susceptibility through a artificial neural network classifier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1489-1516, December.
- Wei-ping Lou & Hai-yan Chen & Xin-fa Qiu & Qi-yi Tang & Feng Zheng, 2012. "Assessment of economic losses from tropical cyclone disasters based on PCA-BP," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 819-829, February.
- Arsalan Mahmoodzadeh & Mokhtar Mohammadi & Hunar Farid Hama Ali & Hawkar Hashim Ibrahim & Sazan Nariman Abdulhamid & Hamid Reza Nejati, 2022. "Prediction of safety factors for slope stability: comparison of machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1771-1799, March.
More about this item
Keywords
Machine learning; Slope stability; Artificial neural network; Residual soil;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:3:d:10.1007_s11069-020-04141-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.