IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i12p15839-16669d60761.html
   My bibliography  Save this article

Landslide Susceptibility Mapping Based on Selected Optimal Combination of Landslide Predisposing Factors in a Large Catchment

Author

Listed:
  • Qianqian Wang

    (School of Geology and Geomatics, Tianjin Chengjian University, No. 26 Jinjing RD., Xiqing District, Tianjin 300384, China)

  • Dongchuan Wang

    (School of Geology and Geomatics, Tianjin Chengjian University, No. 26 Jinjing RD., Xiqing District, Tianjin 300384, China)

  • Yong Huang

    (Appraisal Center for Environment & Engineering Ministry of Environmental Protection, No. 8 Beiyuan RD., Chaoyang District, Beijing 100012, China)

  • Zhiheng Wang

    (School of Geology and Geomatics, Tianjin Chengjian University, No. 26 Jinjing RD., Xiqing District, Tianjin 300384, China)

  • Lihui Zhang

    (School of Geology and Geomatics, Tianjin Chengjian University, No. 26 Jinjing RD., Xiqing District, Tianjin 300384, China)

  • Qiaozhen Guo

    (School of Geology and Geomatics, Tianjin Chengjian University, No. 26 Jinjing RD., Xiqing District, Tianjin 300384, China)

  • Wei Chen

    (School of Geology and Geomatics, Tianjin Chengjian University, No. 26 Jinjing RD., Xiqing District, Tianjin 300384, China)

  • Wengang Chen

    (School of Geology and Geomatics, Tianjin Chengjian University, No. 26 Jinjing RD., Xiqing District, Tianjin 300384, China)

  • Mengqin Sang

    (School of Geology and Geomatics, Tianjin Chengjian University, No. 26 Jinjing RD., Xiqing District, Tianjin 300384, China)

Abstract

Landslides are usually initiated under complex geological conditions. It is of great significance to find out the optimal combination of predisposing factors and create an accurate landslide susceptibility map based on them. In this paper, the Information Value Model was modified to make the Modified Information Value (MIV) Model, and together with GIS (Geographical Information System) and AUC (Area Under Receiver Operating Characteristic Curve) test, 32 factor combinations were evaluated separately, and factor combination group with members Slope, Lithology, Drainage network, Annual precipitation, Faults, Road and Vegetation was selected as the optimal combination group with an accuracy of 95.0%. Based on this group, a landslide susceptibility zonation map was drawn, where the study area was reclassified into five classes, presenting an accurate description of different levels of landslide susceptibility, with 79.41% and 13.67% of the validating field survey landslides falling in the Very High and High zones, respectively, mainly distributed in the south and southeast of the catchment. It showed that MIV model can tackle the problem of “no data in subclass” well, generate the true information value and show real running trend, which performs well in showing the relationship between predisposing factors and landslide occurrence and can be used for preliminary landslide susceptibility assessment in the study area.

Suggested Citation

  • Qianqian Wang & Dongchuan Wang & Yong Huang & Zhiheng Wang & Lihui Zhang & Qiaozhen Guo & Wei Chen & Wengang Chen & Mengqin Sang, 2015. "Landslide Susceptibility Mapping Based on Selected Optimal Combination of Landslide Predisposing Factors in a Large Catchment," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:12:p:15839-16669:d:60761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/12/15839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/12/15839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong Huang & Li Zheng & Dongchuan Wang & Wengang Chen & Qianqian Wang, 2015. "Spatial Distribution of Fragmentation by Diversion-Typed Hydroelectric Plant Exploitation in East Baoxing Catchment from 1999 to 2013," Sustainability, MDPI, vol. 7(4), pages 1-13, March.
    2. L. Sharma & Nilanchal Patel & M. Ghose & P. Debnath, 2015. "Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1555-1576, January.
    3. Melanie Gall & Kevin A. Borden & Christopher T. Emrich & Susan L. Cutter, 2011. "The Unsustainable Trend of Natural Hazard Losses in the United States," Sustainability, MDPI, vol. 3(11), pages 1-25, November.
    4. E. Sujatha & Victor Rajamanickam, 2011. "Landslide susceptibility mapping of Tevankarai Ar sub-watershed, Kodaikkanal taluk, India, using weighted similar choice fuzzy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 401-425, October.
    5. Wenbo Xu & Wenjuan Yu & Shaocai Jing & Guoping Zhang & Jianxi Huang, 2013. "Debris flow susceptibility assessment by GIS and information value model in a large-scale region, Sichuan Province (China)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1379-1392, February.
    6. Jessica Mercer & Tiina Kurvits & Ilan Kelman & Stavros Mavrogenis, 2014. "Ecosystem-Based Adaptation for Food Security in the AIMS SIDS: Integrating External and Local Knowledge," Sustainability, MDPI, vol. 6(9), pages 1-32, August.
    7. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    8. Yi-Chang Chen & Chen-Fa Wu & Shin-Hwei Lin, 2014. "Mechanisms of Forest Restoration in Landslide Treatment Areas," Sustainability, MDPI, vol. 6(10), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rachida Senouci & Nasr-Eddine Taibi & Ana Cláudia Teodoro & Lia Duarte & Hamidi Mansour & Rabia Yahia Meddah, 2021. "GIS-Based Expert Knowledge for Landslide Susceptibility Mapping (LSM): Case of Mostaganem Coast District, West of Algeria," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    2. Langping Li & Hengxing Lan, 2020. "Integration of Spatial Probability and Size in Slope-Unit-Based Landslide Susceptibility Assessment: A Case Study," IJERPH, MDPI, vol. 17(21), pages 1-17, November.
    3. Sangseom Jeong & Azman Kassim & Moonhyun Hong & Nader Saadatkhah, 2018. "Susceptibility Assessments of Landslides in Hulu Kelang Area Using a Geographic Information System-Based Prediction Model," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    4. Xiang Zhang & Minghui Zhang & Xin Liu & Berhanu Keno Terfa & Won-Ho Nam & Xihui Gu & Xu Zhang & Chao Wang & Jian Yang & Peng Wang & Chenghong Hu & Wenkui Wu & Nengcheng Chen, 2024. "Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11485-11525, October.
    5. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    6. Jamal Jokar Arsanjani & Eric Vaz, 2017. "Special Issue Editorial: Earth Observation and Geoinformation Technologies for Sustainable Development," Sustainability, MDPI, vol. 9(5), pages 1-5, May.
    7. Suhua Zhou & Guangqi Chen & Ligang Fang & Yunwen Nie, 2016. "GIS-Based Integration of Subjective and Objective Weighting Methods for Regional Landslides Susceptibility Mapping," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
    8. Halil Akinci & Mustafa Zeybek, 2021. "Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1515-1543, September.
    9. Derya Ozturk & Nergiz Uzel-Gunini, 2022. "Investigation of the effects of hybrid modeling approaches, factor standardization, and categorical mapping on the performance of landslide susceptibility mapping in Van, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2571-2604, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui-Xuan Tang & E-Chuan Yan & Tao Wen & Xiao-Meng Yin & Wei Tang, 2021. "Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    2. Hassan Abedi Gheshlaghi & Bakhtiar Feizizadeh, 2021. "GIS-based ensemble modelling of fuzzy system and bivariate statistics as a tool to improve the accuracy of landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1981-2014, June.
    3. Hao Pu & Jia Xie & Paul Schonfeld & Taoran Song & Wei Li & Jie Wang & Jianping Hu, 2021. "Railway Alignment Optimization in Mountainous Regions Considering Spatial Geological Hazards: A Sustainable Safety Perspective," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    4. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    5. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Lee, Alice J. & Ames, Daniel R., 2017. "“I can’t pay more” versus “It’s not worth more”: Divergent effects of constraint and disparagement rationales in negotiations," Organizational Behavior and Human Decision Processes, Elsevier, vol. 141(C), pages 16-28.
    7. Hussain, Hadia & Murtaza, Murtaza & Ajmal, Areeb & Ahmed, Afreen & Khan, Muhammad Ovais Khalid, 2020. "A study on the effects of social media advertisement on consumer’s attitude and customer response," MPRA Paper 104675, University Library of Munich, Germany.
    8. A. G. Fatullayev & Nizami A. Gasilov & Şahin Emrah Amrahov, 2019. "Numerical solution of linear inhomogeneous fuzzy delay differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 18(3), pages 315-326, September.
    9. Cyril Chalendard, 2015. "Use of internal information, external information acquisition and customs underreporting," Working Papers halshs-01179445, HAL.
    10. Arun Advani & William Elming & Jonathan Shaw, 2023. "The Dynamic Effects of Tax Audits," The Review of Economics and Statistics, MIT Press, vol. 105(3), pages 545-561, May.
    11. Philippe Aghion & Ufuk Akcigit & Matthieu Lequien & Stefanie Stantcheva, 2017. "Tax simplicity and heterogeneous learning," CEP Discussion Papers dp1516, Centre for Economic Performance, LSE.
    12. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    13. Chuangen Gao & Shuyang Gu & Jiguo Yu & Hai Du & Weili Wu, 2022. "Adaptive seeding for profit maximization in social networks," Journal of Global Optimization, Springer, vol. 82(2), pages 413-432, February.
    14. Koessler, Frederic & Laclau, Marie & Renault, Jérôme & Tomala, Tristan, 2022. "Long information design," Theoretical Economics, Econometric Society, vol. 17(2), May.
    15. Jamal El-Den & Pratap Adikhari & Pratap Adikhari, 2017. "Social media in the service of social entrepreneurship: Identifying factors for better services," Journal of Advances in Humanities and Social Sciences, Dr. Yi-Hsing Hsieh, vol. 3(2), pages 105-114.
    16. Annette Alstadsæter & Wojciech Kopczuk & Kjetil Telle, 2019. "Social networks and tax avoidance: evidence from a well-defined Norwegian tax shelter," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 26(6), pages 1291-1328, December.
    17. Xiongnan Jin & Sejin Chun & Jooik Jung & Kyong-Ho Lee, 0. "A fast and scalable approach for IoT service selection based on a physical service model," Information Systems Frontiers, Springer, vol. 0, pages 1-16.
    18. Jun Hong Park & Sang Ho Kook & Hyeonu Im & Soomin Eum & Chulung Lee, 2018. "Fabless Semiconductor Firms’ Financial Performance Determinant Factors: Product Platform Efficiency and Technological Capability," Sustainability, MDPI, vol. 10(10), pages 1-22, September.
    19. Sebastian Kaumanns, 2019. "“Some fuzzy math”: relational information on debt value adjustments by managers and the financial press," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 755-794, December.
    20. Samuel J Gershman, 2015. "A Unifying Probabilistic View of Associative Learning," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:12:p:15839-16669:d:60761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.