IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v99y2019i2d10.1007_s11069-019-03795-x.html
   My bibliography  Save this article

Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil

Author

Listed:
  • Guilherme Garcia Oliveira

    (Federal University of Rio Grande do Sul)

  • Luis Fernando Chimelo Ruiz

    (Federal University of Rio Grande do Sul)

  • Laurindo Antonio Guasselli

    (Federal University of Rio Grande do Sul)

  • Claus Haetinger

    (University of Vale do Taquari)

Abstract

Empirical models based on machine learning methods have been used for landslide susceptibility mapping. The most accurate model is usually chosen to generate the final map. This paper demonstrates the importance of analyzing the spatial pattern of susceptibility maps, since models with similar performance can produce different output values. The relevance of terrain attributes and the sensitivity of models to input variables are also discussed. The applications of random forest (RF) and artificial neural network (ANN) models to the identification of landslide susceptible areas in the Fão River Basin, Southern Brazil, were evaluated and compared. The following have been included in the methodology: (1) the extraction of predictive attributes (e.g., slope, aspect, curvatures, valley depth) from a digital elevation model; (2) the organization of a landslide scar inventory; (3) the calibration and validation procedures of the models; (4) the analysis of model performance according to accuracy (area under the receiver operating characteristic curve) and parsimony (Akaike Information Criterion); (5) the reclassification of maps into susceptibility categories. All model configurations resulted in an accuracy above 0.9, demonstrating the ability of both techniques in landslide susceptibility mapping. The RF model stood out in this respect, recording the highest accuracy index among all tested configurations (0.949). The ANN model was more parsimonious, obtaining an accuracy of 0.925 with a much smaller number of internal connections. Thus, even with both having high and equivalent accuracy indexes, the models can establish different relationships between the input and the output susceptibility indexes, resulting in various possible landslide occurrence scenarios. These differences, together with the difficulty in defining which model presents more coherent results, reinforce the possibility of extracting spatial statistics, considering multiple configurations of models that combine accuracy and parsimony, in landslide susceptibility mapping.

Suggested Citation

  • Guilherme Garcia Oliveira & Luis Fernando Chimelo Ruiz & Laurindo Antonio Guasselli & Claus Haetinger, 2019. "Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1049-1073, November.
  • Handle: RePEc:spr:nathaz:v:99:y:2019:i:2:d:10.1007_s11069-019-03795-x
    DOI: 10.1007/s11069-019-03795-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03795-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03795-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Chalkias & S. Kalogirou & M. Ferentinou, 2014. "Landslide susceptibility, Peloponnese Peninsula in South Greece," Journal of Maps, Taylor & Francis Journals, vol. 10(2), pages 211-222, April.
    2. T. Fernández & C. Irigaray & R. El Hamdouni & J. Chacón, 2003. "Methodology for Landslide Susceptibility Mapping by Means of a GIS. Application to the Contraviesa Area (Granada, Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 297-308, November.
    3. Maurizio Lazzari & Dario Gioia & Bernardino Anzidei, 2018. "Landslide inventory of the Basilicata region (Southern Italy)," Journal of Maps, Taylor & Francis Journals, vol. 14(2), pages 348-356, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xudong Hu & Hongbo Mei & Han Zhang & Yuanyuan Li & Mengdi Li, 2021. "Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1663-1689, January.
    2. Xiang Zhang & Minghui Zhang & Xin Liu & Berhanu Keno Terfa & Won-Ho Nam & Xihui Gu & Xu Zhang & Chao Wang & Jian Yang & Peng Wang & Chenghong Hu & Wenkui Wu & Nengcheng Chen, 2024. "Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11485-11525, October.
    3. Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
    4. Youssef El Miloudi & Younes El Kharim & Ali Bounab & Rachid El Hamdouni, 2024. "Effect of Rockfall Spatial Representation on the Accuracy and Reliability of Susceptibility Models (The Case of the Haouz Dorsale Calcaire, Morocco)," Land, MDPI, vol. 13(2), pages 1-16, February.
    5. Xiao-yan Huang & Li He & Hua-sheng Zhao & Ying Huang & Yu-shuang Wu, 2021. "Prediction model based on the Laplacian eigenmap method combined with a random forest algorithm for rainstorm satellite images during the first annual rainy season in South China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 331-353, May.
    6. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    7. Mária Barančoková & Matej Šošovička & Peter Barančok & Peter Barančok, 2021. "Predictive Modelling of Landslide Susceptibility in the Western Carpathian Flysch Zone," Land, MDPI, vol. 10(12), pages 1-28, December.
    8. Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
    9. Hamid Reza Pourghasemi & Soheila Pouyan & Mojgan Bordbar & Foroogh Golkar & John J. Clague, 2023. "Flood, landslides, forest fire, and earthquake susceptibility maps using machine learning techniques and their combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3797-3816, April.
    10. Tingyu Zhang & Quan Fu & Chao Li & Fangfang Liu & Huanyuan Wang & Ling Han & Renata Pacheco Quevedo & Tianqing Chen & Na Lei, 2022. "Modeling landslide susceptibility using data mining techniques of kernel logistic regression, fuzzy unordered rule induction algorithm, SysFor and random forest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3327-3358, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Zhao & Xuexi Yang & Qianhong Wu & Weifeng Xiao & Wentao Yang & Min Deng, 2022. "Uncovering the Structural Effect Mechanisms of Natural and Social Factors on Land Subsidence: A Case Study in Beijing," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    2. Christos Polykretis & Christos Chalkias, 2018. "Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 249-274, August.
    3. Bilquis Shah & M. Sultan Bhat & Akhtar Alam & Hilal Ahmad Sheikh & Noureen Ali, 2022. "Developing landslide hazard scenario using the historical events for the Kashmir Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3763-3785, December.
    4. Xiaoyi Shao & Siyuan Ma & Chong Xu & Lingling Shen & Yongkun Lu, 2020. "Inventory, Distribution and Geometric Characteristics of Landslides in Baoshan City, Yunnan Province, China," Sustainability, MDPI, vol. 12(6), pages 1-23, March.
    5. Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
    6. S. Boussouf & T. Fernández & A. B. Hart, 2023. "Landslide susceptibility mapping using maximum entropy (MaxEnt) and geographically weighted logistic regression (GWLR) models in the Río Aguas catchment (Almería, SE Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 207-235, May.
    7. Derly Gómez & Edwin F. García & Edier Aristizábal, 2023. "Spatial and temporal landslide distributions using global and open landslide databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 25-55, May.
    8. Massimo Conforti & Gaetano Robustelli & Francesco Muto & Salvatore Critelli, 2012. "Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 127-141, March.
    9. A. Clerici & S. Perego & C. Tellini & P. Vescovi, 2010. "Landslide failure and runout susceptibility in the upper T. Ceno valley (Northern Apennines, Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 1-29, January.
    10. Xianyu Yu & Yi Wang & Ruiqing Niu & Youjian Hu, 2016. "A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, Chin," IJERPH, MDPI, vol. 13(5), pages 1-35, May.
    11. Adel Ghasemi & Omid Bahmani & Samira Akhavan & Hamid Reza Pourghasemi, 2023. "Investigation of land-subsidence phenomenon and aquifer vulnerability using machine models and GIS technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1645-1671, September.
    12. Yang Hong & Robert Adler & George Huffman, 2007. "Use of satellite remote sensing data in the mapping of global landslide susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 245-256, November.
    13. Sheng Ma & Jian Chen & Saier Wu & Yurou Li, 2023. "Landslide Susceptibility Prediction Using Machine Learning Methods: A Case Study of Landslides in the Yinghu Lake Basin in Shaanxi," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    14. Vahed Ghiasi & Seyed Amir Reza Ghasemi & Mahyar Yousefi, 2021. "Landslide susceptibility mapping through continuous fuzzification and geometric average multi-criteria decision-making approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 795-808, May.
    15. Luigi Spalluto & Antonio Fiore & Maria Nilla Miccoli & Mario Parise, 2021. "Activity maps of multi-source mudslides from the Daunia Apennines (Apulia, southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 277-301, March.
    16. José Antonio Palenzuela & Jorge David Jiménez-Perálvarez & José Chacón & Clemente Irigaray, 2016. "Assessing critical rainfall thresholds for landslide triggering by generating additional information from a reduced database: an approach with examples from the Betic Cordillera (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 185-212, October.
    17. Emmanouil Psomiadis & Andreas Papazachariou & Konstantinos X. Soulis & Despoina-Simoni Alexiou & Ioannis Charalampopoulos, 2020. "Landslide Mapping and Susceptibility Assessment Using Geospatial Analysis and Earth Observation Data," Land, MDPI, vol. 9(5), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:99:y:2019:i:2:d:10.1007_s11069-019-03795-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.