IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v108y2021i1d10.1007_s11069-021-04713-w.html
   My bibliography  Save this article

Prediction of landslide displacement using multi-kernel extreme learning machine and maximum information coefficient based on variational mode decomposition: a case study in Shaanxi, China

Author

Listed:
  • Qing Ling

    (Lanzhou University of Technology
    Chang’ an University)

  • Qin Zhang

    (Chang’ an University)

  • Jing Zhang

    (Chang’ an University)

  • Lingjie Kong

    (Lanzhou University of Technology)

  • Weiqi Zhang

    (The First Geodetic Team of the Ministry of Natural Resources)

  • Li Zhu

    (Information Engineering University)

Abstract

Prediction of landslide movement is an efficient approach in the reduction in landslide risk. However, it is also a tough task due to the scientific challenges in forecasting a sophisticated natural disaster. This paper proposes a VMD-MIC-M-KELM (variational mode decomposition-maximum information coefficient-multi-kernel extreme learning machine) technique for prediction of landslide movements. The original displacement is first decomposed into a predefined number of components by VMD. Then, the triggers of each component are selected based on MIC between subseries and influencing factors. The decomposed terms are predicted by M-KELM respectively via k-fold cross-validation. Finally, predicted total displacement is achieved by summing up all forecasting subseries. A case study of Miaodian landslide (China) is presented for validation of the developed model. The verification results demonstrate the higher ability of the approach to forecast monthly displacement for periods up to 12 months as compared to the Poly-KELM and SVR models. Thus, improved monthly predictions may be achieved with constantly updated datasets from the monitoring system, which would offer reliable information for early warning of landslide.

Suggested Citation

  • Qing Ling & Qin Zhang & Jing Zhang & Lingjie Kong & Weiqi Zhang & Li Zhu, 2021. "Prediction of landslide displacement using multi-kernel extreme learning machine and maximum information coefficient based on variational mode decomposition: a case study in Shaanxi, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 925-946, August.
  • Handle: RePEc:spr:nathaz:v:108:y:2021:i:1:d:10.1007_s11069-021-04713-w
    DOI: 10.1007/s11069-021-04713-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04713-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04713-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shidong Wu & Hengrui Ma & Abdullah M. Alharbi & Bo Wang & Li Xiong & Suxun Zhu & Lidong Qin & Gangfei Wang, 2023. "Integrated Energy System Based on Isolation Forest and Dynamic Orbit Multivariate Load Forecasting," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    2. Chenhui Wang & Wei Guo, 2023. "Prediction of Landslide Displacement Based on the Variational Mode Decomposition and GWO-SVR Model," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    3. Jiaqi Zhang & Xijun He, 2023. "Earthquake magnitude prediction using a VMD-BP neural network model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 189-205, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:108:y:2021:i:1:d:10.1007_s11069-021-04713-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.