IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i1d10.1007_s11069-022-05671-7.html
   My bibliography  Save this article

Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model

Author

Listed:
  • Batmyagmar Dashbold

    (Stantec, Inc.)

  • L. Sebastian Bryson

    (University of Kentucky)

  • Matthew M. Crawford

    (University of Kentucky)

Abstract

Landslide susceptibility mapping and landslide hazard mapping are approaches used to assess the potential for landslides and predict the occurrence of landslides, respectively. We evaluated and tested a limit equilibrium approach to produce a local-scale, multi-temporal geographic information system-based landslide hazard map that utilized satellite soil moisture data, soil strength and hydrologic data, and a high-resolution (1.5 m) LiDAR-derived digital elevation map. The final multi-temporal landslide hazard map was validated temporally and spatially using four study sites at known landslide locations and failure dates. The resulting product correctly indicated low factor of safety values at the study sites on the dates the landslide occurred. Also, we produced a regional-scale landslide susceptibility map using a logistic regression machine learning model using 15 variables derived from the geomorphology, soil properties, and land-cover data. The area under the curve of the receiver operating characteristic curve was used for the accuracy of the model, which yielded a success rate of 0.84. We show that using publicly available data, a multi-temporal landslide hazard map can be created that will produce a close-to-real-time landslide predictive map. The landslide hazard map provides an understanding into the evolution of landslide development temporally and spatially, whereas the landslide susceptibility map indicates the probability of landslides occurring at specific locations. When used in tandem, the two mapping models are complementary to each other. Specifically, the landslide susceptibility mapping identifies the area most susceptible to landslides, while the landslide hazard mapping predicts when landslide may occur within the identified susceptible area.

Suggested Citation

  • Batmyagmar Dashbold & L. Sebastian Bryson & Matthew M. Crawford, 2023. "Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 235-265, March.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05671-7
    DOI: 10.1007/s11069-022-05671-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05671-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05671-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    2. Faraz S. Tehrani & Michele Calvello & Zhongqiang Liu & Limin Zhang & Suzanne Lacasse, 2022. "Machine learning and landslide studies: recent advances and applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1197-1245, November.
    3. Hamid Reza Pourghasemi & Nitheshnirmal Sadhasivam & Mahdis Amiri & Saeedeh Eskandari & M. Santosh, 2021. "Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1291-1316, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yimin Li & Xuanlun Deng & Peikun Ji & Yiming Yang & Wenxue Jiang & Zhifang Zhao, 2022. "Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture," IJERPH, MDPI, vol. 19(21), pages 1-24, October.
    2. Esteban Bravo-López & Tomás Fernández Del Castillo & Chester Sellers & Jorge Delgado-García, 2023. "Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods," Land, MDPI, vol. 12(6), pages 1-28, May.
    3. Adrián G. Bruzón & Patricia Arrogante-Funes & Fátima Arrogante-Funes & Fidel Martín-González & Carlos J. Novillo & Rubén R. Fernández & René Vázquez-Jiménez & Antonio Alarcón-Paredes & Gustavo A. Alon, 2021. "Landslide Susceptibility Assessment Using an AutoML Framework," IJERPH, MDPI, vol. 18(20), pages 1-20, October.
    4. Deborah Simon Mwakapesa & Yimin Mao & Xiaoji Lan & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Mapping Using DIvisive ANAlysis (DIANA) and RObust Clustering Using linKs (ROCK) Algorithms, and Comparison of Their Performance," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    5. Yuting Liu & Giordano Teza & Lorenzo Nava & Zhilu Chang & Min Shang & Debing Xiong & Simonetta Cola, 2024. "Deformation evaluation and displacement forecasting of baishuihe landslide after stabilization based on continuous wavelet transform and deep learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9649-9673, September.
    6. Lu Fang & Qian Wang & Jianping Yue & Yin Xing, 2023. "Analysis of Optimal Buffer Distance for Linear Hazard Factors in Landslide Susceptibility Prediction," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    7. Dhanya Madhu & G. K. Nithya & S. Sreekala & Maneesha Vinodini Ramesh, 2024. "Regional-scale landslide modeling using machine learning and GIS: a case study for Idukki district, Kerala, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9935-9956, September.
    8. Hasnain Iftikhar & Murad Khan & Zardad Khan & Faridoon Khan & Huda M Alshanbari & Zubair Ahmad, 2023. "A Comparative Analysis of Machine Learning Models: A Case Study in Predicting Chronic Kidney Disease," Sustainability, MDPI, vol. 15(3), pages 1-13, February.
    9. Xiang Zhang & Minghui Zhang & Xin Liu & Berhanu Keno Terfa & Won-Ho Nam & Xihui Gu & Xu Zhang & Chao Wang & Jian Yang & Peng Wang & Chenghong Hu & Wenkui Wu & Nengcheng Chen, 2024. "Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11485-11525, October.
    10. Ying-Jen Chang & Kuo-Chuan Hung & Li-Kai Wang & Chia-Hung Yu & Chao-Kun Chen & Hung-Tze Tay & Jhi-Joung Wang & Chung-Feng Liu, 2021. "A Real-Time Artificial Intelligence-Assisted System to Predict Weaning from Ventilator Immediately after Lung Resection Surgery," IJERPH, MDPI, vol. 18(5), pages 1-14, March.
    11. Qing Liu & Tingting Wu & Yahong Deng & Zhiheng Liu, 2023. "SE-YOLOv7 Landslide Detection Algorithm Based on Attention Mechanism and Improved Loss Function," Land, MDPI, vol. 12(8), pages 1-19, July.
    12. Maela Madel L. Cahigas & Ardvin Kester S. Ong & Yogi Tri Prasetyo, 2023. "Super Typhoon Rai’s Impacts on Siargao Tourism: Deciphering Tourists’ Revisit Intentions through Machine-Learning Algorithms," Sustainability, MDPI, vol. 15(11), pages 1-29, May.
    13. Shengjie Rui & Zhen Guo & Wenjie Zhou, 2023. "Promoting Sustainable Marine Development: Geotechnical Engineering Problems and Environmental Guarantee Technology in Marine Space, Energy, and Resource Development," Sustainability, MDPI, vol. 15(19), pages 1-3, October.
    14. Prahlada V. Mittal & Rishabh Bafna & Ankush Mittal, 2023. "Unsupervised learning framework for region-based damage assessment on xBD, a large satellite imagery," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1619-1643, September.
    15. Ahmed Cemiloglu & Licai Zhu & Agab Bakheet Mohammednour & Mohammad Azarafza & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm," Land, MDPI, vol. 12(7), pages 1-20, July.
    16. Faïla Benzenine & Mohamed Amine Allal & Chérifa Abdelbaki & Navneet Kumar & Mattheus Goosen & John Mwangi Gathenya, 2023. "Multi-Hazard Risk Assessment and Landslide Susceptibility Mapping: A Case Study from Bensekrane in Algeria," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    17. Yadviga Tynchenko & Vladislav Kukartsev & Vadim Tynchenko & Oksana Kukartseva & Tatyana Panfilova & Alexey Gladkov & Van Nguyen & Ivan Malashin, 2024. "Landslide Assessment Classification Using Deep Neural Networks Based on Climate and Geospatial Data," Sustainability, MDPI, vol. 16(16), pages 1-26, August.
    18. Gongfa Chen & Wei Deng & Mansheng Lin & Jianbin Lv, 2023. "Slope stability analysis based on convolutional neural network and digital twin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1427-1443, September.
    19. Han Zhang & Chao Yin & Shaoping Wang & Bing Guo, 2023. "Landslide susceptibility mapping based on landslide classification and improved convolutional neural networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1931-1971, March.
    20. Xianyu Yu & Yang Xia & Jianguo Zhou & Weiwei Jiang, 2023. "Landslide Susceptibility Mapping Based on Multitemporal Remote Sensing Image Change Detection and Multiexponential Band Math," Sustainability, MDPI, vol. 15(3), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05671-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.