Analysis of Optimal Buffer Distance for Linear Hazard Factors in Landslide Susceptibility Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Weidong Wang & Zhuolei He & Zheng Han & Yange Li & Jie Dou & Jianling Huang, 2020. "Mapping the susceptibility to landslides based on the deep belief network: a case study in Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3239-3261, September.
- Faraz S. Tehrani & Michele Calvello & Zhongqiang Liu & Limin Zhang & Suzanne Lacasse, 2022. "Machine learning and landslide studies: recent advances and applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1197-1245, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Longye Hu & Chaode Yan, 2024. "Evaluation of Landslide Susceptibility of Mangshan Mountain in Zhengzhou Based on GWO-1D CNN Model," Sustainability, MDPI, vol. 16(12), pages 1-23, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Batmyagmar Dashbold & L. Sebastian Bryson & Matthew M. Crawford, 2023. "Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 235-265, March.
- Mustafa Kamal & Baolei Zhang & Jianfei Cao & Xin Zhang & Jun Chang, 2022. "Comparative Study of Artificial Neural Network and Random Forest Model for Susceptibility Assessment of Landslides Induced by Earthquake in the Western Sichuan Plateau, China," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
- Jinming Zhang & Jianxi Qian & Yuefeng Lu & Xueyuan Li & Zhenqi Song, 2024. "Study on Landslide Susceptibility Based on Multi-Model Coupling: A Case Study of Sichuan Province, China," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
- Qing Liu & Tingting Wu & Yahong Deng & Zhiheng Liu, 2023. "SE-YOLOv7 Landslide Detection Algorithm Based on Attention Mechanism and Improved Loss Function," Land, MDPI, vol. 12(8), pages 1-19, July.
- Xianmin Wang & Xinlong Zhang & Jia Bi & Xudong Zhang & Shiqiang Deng & Zhiwei Liu & Lizhe Wang & Haixiang Guo, 2022. "Landslide Susceptibility Evaluation Based on Potential Disaster Identification and Ensemble Learning," IJERPH, MDPI, vol. 19(21), pages 1-26, October.
- Rui-Xuan Tang & E-Chuan Yan & Tao Wen & Xiao-Meng Yin & Wei Tang, 2021. "Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
- Esteban Bravo-López & Tomás Fernández Del Castillo & Chester Sellers & Jorge Delgado-García, 2023. "Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods," Land, MDPI, vol. 12(6), pages 1-28, May.
- Shengjie Rui & Zhen Guo & Wenjie Zhou, 2023. "Promoting Sustainable Marine Development: Geotechnical Engineering Problems and Environmental Guarantee Technology in Marine Space, Energy, and Resource Development," Sustainability, MDPI, vol. 15(19), pages 1-3, October.
- Prahlada V. Mittal & Rishabh Bafna & Ankush Mittal, 2023. "Unsupervised learning framework for region-based damage assessment on xBD, a large satellite imagery," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1619-1643, September.
- Junpeng Huang & Sixiang Ling & Xiyong Wu & Rui Deng, 2022. "GIS-Based Comparative Study of the Bayesian Network, Decision Table, Radial Basis Function Network and Stochastic Gradient Descent for the Spatial Prediction of Landslide Susceptibility," Land, MDPI, vol. 11(3), pages 1-25, March.
- Yadviga Tynchenko & Vladislav Kukartsev & Vadim Tynchenko & Oksana Kukartseva & Tatyana Panfilova & Alexey Gladkov & Van Nguyen & Ivan Malashin, 2024. "Landslide Assessment Classification Using Deep Neural Networks Based on Climate and Geospatial Data," Sustainability, MDPI, vol. 16(16), pages 1-26, August.
- Gongfa Chen & Wei Deng & Mansheng Lin & Jianbin Lv, 2023. "Slope stability analysis based on convolutional neural network and digital twin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1427-1443, September.
- Han Zhang & Chao Yin & Shaoping Wang & Bing Guo, 2023. "Landslide susceptibility mapping based on landslide classification and improved convolutional neural networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1931-1971, March.
- Tingyu Zhang & Quan Fu & Chao Li & Fangfang Liu & Huanyuan Wang & Ling Han & Renata Pacheco Quevedo & Tianqing Chen & Na Lei, 2022. "Modeling landslide susceptibility using data mining techniques of kernel logistic regression, fuzzy unordered rule induction algorithm, SysFor and random forest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3327-3358, December.
More about this item
Keywords
landslide; linear hazard factors; buffer; correlation; optimal distance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10180-:d:1180440. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.