IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v106y2021i1d10.1007_s11069-020-04498-4.html
   My bibliography  Save this article

Exploring the impact of introducing a physical model into statistical methods on the evaluation of regional scale debris flow susceptibility

Author

Listed:
  • Jingbo Sun

    (Jilin University)

  • Shengwu Qin

    (Jilin University)

  • Shuangshuang Qiao

    (Jilin University)

  • Yang Chen

    (Jilin University)

  • Gang Su

    (Jilin University)

  • Qiushi Cheng

    (Jilin University)

  • Yanqing Zhang

    (Jilin University)

  • Xu Guo

    (Jilin University)

Abstract

Regional scale debris flow susceptibility is widely evaluated by statistical methods. However, the initiation mechanism of debris flow is not considered, which leads to the neglect of the microtopographic characteristics. To address this problem, we established three novel combined models by introducing the physical model into statistical methods. The integrating models consists of two parts, the statistical models and the TRIGRS model. The eventual results obtained with the integrating model consider both the prediction result of the statistical method for debris flow susceptibility and the mechanism of debris flow initiation. To test the feasibility of the integrating model, three representative statistical models, the analytic hierarchy process (AHP), Shannon entropy (Entropy) and support vector machine (SVM) were selected to evaluate debris flow susceptibility in Yongji County of Jilin Province, China. The results demonstrate that the performance of the integrated models is significantly better than that of the single statistical model, especially in the local areas. The integrating models (AHP-TR, Entropy-TR, SVM-TR) can generate higher quality debris flow susceptibility maps (DFSMs) than the single model, which clearly reflect the scope and boundaries of the areas which are most prone to debris flow and identify the flat land and valleys between adjacent high-prone areas. It also reduces the overprediction generated by the physical model. In general, combining the statistical methods with the TRIGRS model can maximize the strengths of these models and avoid their weaknesses and obtain the effect of 1 + 1 > 2.

Suggested Citation

  • Jingbo Sun & Shengwu Qin & Shuangshuang Qiao & Yang Chen & Gang Su & Qiushi Cheng & Yanqing Zhang & Xu Guo, 2021. "Exploring the impact of introducing a physical model into statistical methods on the evaluation of regional scale debris flow susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 881-912, March.
  • Handle: RePEc:spr:nathaz:v:106:y:2021:i:1:d:10.1007_s11069-020-04498-4
    DOI: 10.1007/s11069-020-04498-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04498-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04498-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. W. Park & S. R. Lee & N. N. Vasu & S. H. Kang & J. Y. Park, 2016. "Coupled model for simulation of landslides and debris flows at local scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1653-1682, April.
    2. Juan Cao & Zhao Zhang & Jie Du & Liangliang Zhang & Yun Song & Geng Sun, 2020. "Multi-geohazards susceptibility mapping based on machine learning—a case study in Jiuzhaigou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 851-871, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajesh Kumar Dash & Philips Omowumi Falae & Debi Prasanna Kanungo, 2022. "Debris flow susceptibility zonation using statistical models in parts of Northwest Indian Himalayas—implementation, validation, and comparative evaluation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2011-2058, March.
    2. Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinping Nie & Xiuzhen Li & Wendy Zhou & Ruichi Xu, 2021. "Dynamic hazard assessment of group-occurring debris flows based on a coupled model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2635-2661, April.
    2. Peng Ye & Bin Yu & Wenhong Chen & Kan Liu & Longzhen Ye, 2022. "Rainfall-induced landslide susceptibility mapping using machine learning algorithms and comparison of their performance in Hilly area of Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 965-995, September.
    3. Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
    4. Sinhang Kang & Byungmin Kim, 2022. "Effects of coupled hydro-mechanical model considering dual-phase fluid flow on potential for shallow landslides at a regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1741-1769, March.
    5. Yiru Jia & Jifu Liu & Lanlan Guo & Zhifei Deng & Jiaoyang Li & Hao Zheng, 2021. "Locomotion of Slope Geohazards Responding to Climate Change in the Qinghai-Tibetan Plateau and Its Adjacent Regions," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    6. Sk Ajim Ali & Farhana Parvin & Quoc Bao Pham & Khaled Mohamed Khedher & Mahro Dehbozorgi & Yasin Wahid Rabby & Duong Tran Anh & Duc Hiep Nguyen, 2022. "An ensemble random forest tree with SVM, ANN, NBT, and LMT for landslide susceptibility mapping in the Rangit River watershed, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1601-1633, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:106:y:2021:i:1:d:10.1007_s11069-020-04498-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.