IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v115y2023i2d10.1007_s11069-022-05609-z.html
   My bibliography  Save this article

Risk assessment methods of cascade reservoir dams: a review and reflection

Author

Listed:
  • Te Wang

    (Zhengzhou University
    Zhengzhou University)

  • Zongkun Li

    (Zhengzhou University
    Zhengzhou University)

  • Wei Ge

    (Zhengzhou University
    Zhengzhou University
    Delft University of Technology)

  • Yadong Zhang

    (Zhengzhou University
    Zhengzhou University)

  • Yutie Jiao

    (Zhengzhou University
    Zhengzhou University)

  • Hua Zhang

    (Zhengzhou University
    Zhengzhou University)

  • Heqiang Sun

    (Zhengzhou University
    Zhengzhou University)

  • Pieter Gelder

    (Delft University of Technology)

Abstract

Risk assessment of cascade reservoir dams is not only the key to ensure the safety of the basin, but also the objective requirement of dam risk management. Based on the development status of cascade reservoirs in China, the complexity of dam risk management of cascade reservoirs compared with a single reservoir was analyzed. By reviewing the advances on the studies of dam risk in cascade reservoirs, this paper summarized their limitations in terms of scientificity and practicability. Moreover, some concepts and methods were proposed on the risk assessment of cascade reservoirs: (1) The dam risk of a cascade reservoir was decomposed into own risk and additional risk, the consequence of its dam breach was decomposed into direct loss and potential loss, and an influence coefficient was defined to reflect the risk transmission and superposition degree among cascade reservoirs; (2) The related concepts and formulas for the calculation of dam risk probability and consequence of cascade reservoirs were proposed, which realized the transition of dam risk assessment method from a single reservoir to cascade reservoirs; (3) A project rank classification method for cascade reservoirs was proposed, which took into account not only the project scale and benefits in socioeconomic development, but also the successive dam breaches possibility and consequences. This study is of great significance to clarify the focus of future research and promote the practical application of dam risk management in cascade reservoirs.

Suggested Citation

  • Te Wang & Zongkun Li & Wei Ge & Yadong Zhang & Yutie Jiao & Hua Zhang & Heqiang Sun & Pieter Gelder, 2023. "Risk assessment methods of cascade reservoir dams: a review and reflection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1601-1622, January.
  • Handle: RePEc:spr:nathaz:v:115:y:2023:i:2:d:10.1007_s11069-022-05609-z
    DOI: 10.1007/s11069-022-05609-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05609-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05609-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shang, Yizi & Lu, Shibao & Ye, Yuntao & Liu, Ronghua & Shang, Ling & Liu, Chunna & Meng, Xianyong & Li, Xiaofei & Fan, Qixiang, 2018. "China’ energy-water nexus: Hydropower generation potential of joint operation of the Three Gorges and Qingjiang cascade reservoirs," Energy, Elsevier, vol. 142(C), pages 14-32.
    2. Dongjing Huang & Zhongbo Yu & Yiping Li & Dawei Han & Lili Zhao & Qi Chu, 2017. "Calculation method and application of loss of life caused by dam break in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 39-57, January.
    3. Hennig, Thomas & Wang, Wenling & Feng, Yan & Ou, Xiaokun & He, Daming, 2013. "Review of Yunnan's hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 585-595.
    4. Benjamin Dewals & Sébastien Erpicum & Sylvain Detrembleur & Pierre Archambeau & Michel Pirotton, 2011. "Failure of dams arranged in series or in complex," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 917-939, March.
    5. Edgardo M. Latrubesse & Eugenio Y. Arima & Thomas Dunne & Edward Park & Victor R. Baker & Fernando M. d’Horta & Charles Wight & Florian Wittmann & Jansen Zuanon & Paul A. Baker & Camila C. Ribas & Ric, 2017. "Damming the rivers of the Amazon basin," Nature, Nature, vol. 546(7658), pages 363-369, June.
    6. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
    7. Denghua Zhong & Yuefeng Sun & Mingchao Li, 2011. "Dam break threshold value and risk probability assessment for an earth dam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 129-147, October.
    8. Xingbo Zhou & Zuyu Chen & Jianping Zhou & Xinlei Guo & Xiaohu Du & Qiang Zhang, 2020. "A quantitative risk analysis model for cascade reservoirs overtopping: principle and application," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 249-277, October.
    9. Ping Li & Chuan Liang, 2016. "Risk Analysis for Cascade Reservoirs Collapse Based on Bayesian Networks under the Combined Action of Flood and Landslide Surge," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szłapczyński, Rafał & Szłapczyńska, Joanna & Gil, Mateusz & Życzkowski, Marcin & Montewka, Jakub, 2024. "Holistic collision avoidance decision support system for watchkeeping deck officers," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Uflaz, Esma & Sezer, Sukru Ilke & Tunçel, Ahmet Lutfi & Aydin, Muhammet & Akyuz, Emre & Arslan, Ozcan, 2024. "Quantifying potential cyber-attack risks in maritime transportation under Dempster–Shafer theory FMECA and rule-based Bayesian network modelling," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Obeng, Francis & Domeh, Daniel & Khan, Faisal & Bose, Neil & Sanli, Elizabeth, 2024. "An operational risk management approach for small fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Konstantina Mouchtoglou & Paraskevi Zacharia & Grigoris Nikolaou, 2024. "A Fuzzy Ballast Water Risk Assessment Model in Maritime Transport," Sustainability, MDPI, vol. 16(8), pages 1-26, April.
    6. Fan, Hanwen & Jia, Haiying & He, Xuzhuo & Lyu, Jing, 2024. "Navigating uncertainty: A dynamic Bayesian network-based risk assessment framework for maritime trade routes," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Te & Li, Zongkun & Ge, Wei & Zhang, Hua & Zhang, Yadong & Sun, Heqiang & Jiao, Yutie, 2023. "Risk consequence assessment of dam breach in cascade reservoirs considering risk transmission and superposition," Energy, Elsevier, vol. 265(C).
    2. Zhang, Hua & Li, Zongkun & Ge, Wei & Zhang, Yadong & Wang, Te & Sun, Heqiang & Jiao, Yutie, 2024. "An extended Bayesian network model for calculating dam failure probability based on fuzzy sets and dynamic evidential reasoning," Energy, Elsevier, vol. 301(C).
    3. Chong-Xun Mo & Gui-Yan Mo & Liu Peng & Qing Yang & Xin-Rong Zhu & Qing-Ling Jiang & Ju-Liang Jin, 2019. "Quantitative Vulnerability Model of Earth Dam Overtopping and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1801-1815, March.
    4. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    5. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    7. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    9. Ding, Long & Khan, Faisal & Abbassi, Rouzbeh & Ji, Jie, 2019. "FSEM: An approach to model contribution of synergistic effect of fires for domino effects," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 271-278.
    10. Zhiwei Wan & Hongqi Wu, 2022. "Evolution of Ecological Patterns of Poyang Lake Wetland Landscape over the Last One Hundred Years Based on Historical Topographic Maps and Landsat Images," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    11. Wei Ge & Zongkun Li & Wei Li & Meimei Wu & Juanjuan Li & Yipeng Pan, 2020. "Risk evaluation of dam-break environmental impacts based on the set pair analysis and cloud model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1641-1653, November.
    12. Ye Zheng & Yazhou Xie & Xuejiao Long, 2021. "A comprehensive review of Bayesian statistics in natural hazards engineering," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 63-91, August.
    13. El-Awady, Ahmed & Ponnambalam, Kumaraswamy, 2021. "Integration of simulation and Markov Chains to support Bayesian Networks for probabilistic failure analysis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    14. Meng, Xuejiao & Chang, Jianxia & Wang, Xuebin & Wang, Yimin, 2019. "Multi-objective hydropower station operation using an improved cuckoo search algorithm," Energy, Elsevier, vol. 168(C), pages 425-439.
    15. A. O. Sawakuchi & E. D. Schultz & F. N. Pupim & D. J. Bertassoli & D. F. Souza & D. F. Cunha & C. E. Mazoca & M. P. Ferreira & C. H. Grohmann & I. D. Wahnfried & C. M. Chiessi & F. W. Cruz & R. P. Alm, 2022. "Rainfall and sea level drove the expansion of seasonally flooded habitats and associated bird populations across Amazonia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Isabel L. Jones & Joseph W. Bull, 2020. "Major dams and the challenge of achieving “No Net Loss” of biodiversity in the tropics," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(2), pages 435-443, March.
    17. Hennig, Thomas, 2016. "Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1232-1246.
    18. Cheng, Chuntian & Liu, Benxi & Chau, Kwok-Wing & Li, Gang & Liao, Shengli, 2015. "China׳s small hydropower and its dispatching management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 43-55.
    19. Zhang, Lixiao & Pang, Mingyue & Bahaj, AbuBakr S. & Yang, Yongchuan & Wang, Changbo, 2021. "Small hydropower development in China: Growing challenges and transition strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Ding, Long & Khan, Faisal & Ji, Jie, 2022. "A novel vulnerability model considering synergistic effect of fire and overpressure in chemical processing facilities," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:115:y:2023:i:2:d:10.1007_s11069-022-05609-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.