IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v65y2016icp1232-1246.html
   My bibliography  Save this article

Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus

Author

Listed:
  • Hennig, Thomas

Abstract

The Ayeyarwady basin, one of Asia's largest transnational river basins, shared by Myanmar, China and India, has an immense theoretical hydropower potential of 45GW. Currently hydropower projects with an approximate capacity of 33GW are already in various stages of development. Projects include some of the world's largest and most controversial endeavours (e.g. Myitsone). Of these projects 6.4GW are already installed in 187 hydropower projects (≥1MW). Despite its huge relevance, the transnational Ayeyarwady basin still belongs to the less known basins, which is largely attributed to its small Chinese section. However, the current knowledge is limited to Myanmar's segment where a limited number of 16 projects exist. In contrast, there are a multitude of projects −174 (18 large and 156 small) - in the Chinese section, including the basins largest one (Daying-4: 875MW). The combination of small and large projects makes the Chinese section one of the most dense (small) hydropower catchments worldwide. About half of the entire basin's hydropower output is exported to the energy starved Guangdong province (from both countries) and almost another quarter is used for energy intensive industries in the tiny Chinese section; hence currently only about 30% of the basin's generated (hydro-)electricity is used there for households, industry, etc. This results in a complex water-energy nexus that is complicated by a tangled geopolitical setting directly in the border region, where many projects are located. This paper describes that nexus based on Darrin Magee's powershed approach.

Suggested Citation

  • Hennig, Thomas, 2016. "Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1232-1246.
  • Handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:1232-1246
    DOI: 10.1016/j.rser.2016.07.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116303781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.07.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wagner, Beatrice & Hauer, Christoph & Schoder, Angelika & Habersack, Helmut, 2015. "A review of hydropower in Austria: Past, present and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 304-314.
    2. D. Lumbroso & G. Woolhouse & L. Jones, 2015. "A review of the consideration of climate change in the planning of hydropower schemes in sub-Saharan Africa," Climatic Change, Springer, vol. 133(4), pages 621-633, December.
    3. Hennig, Thomas & Wang, Wenling & Feng, Yan & Ou, Xiaokun & He, Daming, 2013. "Review of Yunnan's hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 585-595.
    4. Mirza, Umar K. & Ahmad, Nasir & Majeed, Tariq & Harijan, Khanji, 2008. "Hydropower use in Pakistan: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1641-1651, August.
    5. Melikoglu, Mehmet, 2013. "Hydropower in Turkey: Analysis in the view of Vision 2023," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 503-510.
    6. Diana Suhardiman & Mark Giordano, 2014. "Legal Plurality: An Analysis of Power Interplay in Mekong Hydropower," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 104(5), pages 973-988, September.
    7. James Randall Kahn & Carlos Edwar Freitas & Miguel Petrere, 2014. "False Shades of Green: The Case of Brazilian Amazonian Hydropower," Energies, MDPI, vol. 7(9), pages 1-20, September.
    8. Ansar, Atif & Flyvbjerg, Bent & Budzier, Alexander & Lunn, Daniel, 2014. "Should we build more large dams? The actual costs of hydropower megaproject development," Energy Policy, Elsevier, vol. 69(C), pages 43-56.
    9. Kankal, Murat & Bayram, Adem & Uzlu, Ergun & Satilmiş, Uğur, 2014. "Assessment of hydropower and multi-dam power projects in Turkey," Renewable Energy, Elsevier, vol. 68(C), pages 118-133.
    10. Saha, Parmita & Idsø, Johannes, 2016. "New hydropower development in Norway: Municipalities׳ attitude, involvement and perceived barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 235-244.
    11. Pode, Ramchandra & Pode, Gayatri & Diouf, Boucar, 2016. "Solution to sustainable rural electrification in Myanmar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 107-118.
    12. Kong, Yigang & Wang, Jie & Kong, Zhigang & Song, Furong & Liu, Zhiqi & Wei, Congmei, 2015. "Small hydropower in China: The survey and sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 425-433.
    13. Singh, Rana Pratap & Nachtnebel, Hans Peter, 2016. "Analytical hierarchy process (AHP) application for reinforcement of hydropower strategy in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 43-58.
    14. Cheng, Chuntian & Liu, Benxi & Chau, Kwok-Wing & Li, Gang & Liao, Shengli, 2015. "China׳s small hydropower and its dispatching management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 43-55.
    15. Li, Yun & Li, Yanbin & Ji, Pengfei & Yang, Jing, 2015. "The status quo analysis and policy suggestions on promoting China׳s hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1071-1079.
    16. Ferreira, Jacson Hudson Inácio & Camacho, José Roberto & Malagoli, Juliana Almansa & Júnior, Sebastião Camargo Guimarães, 2016. "Assessment of the potential of small hydropower development in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 380-387.
    17. Byman Hamududu & Aanund Killingtveit, 2012. "Assessing Climate Change Impacts on Global Hydropower," Energies, MDPI, vol. 5(2), pages 1-18, February.
    18. Sharma, Naveen Kumar & Tiwari, Prashant Kumar & Sood, Yog Raj, 2013. "A comprehensive analysis of strategies, policies and development of hydropower in India: Special emphasis on small hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 460-470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Foran, Tira & Kiik, Laur & Hatt, Sullivan & Fullbrook, David & Dawkins, Alice & Walker, Simon & Chen, Yun, 2017. "Large hydropower and legitimacy: A policy regime analysis, applied to Myanmar," Energy Policy, Elsevier, vol. 110(C), pages 619-630.
    2. Foran, Tira & Kiik, Laur & Hatt, Sullivan & Fullbrook, David & Dawkins, Alice & Walker, Simon & Chen, Yun, 2017. "Large hydropower and legitimacy: a policy regime analysis, applied to Myanmar," MPRA Paper 80944, University Library of Munich, Germany.
    3. Jue Wang & Keyi Ju & Xiaozhuo Wei, 2022. "Where Will ‘Water-Energy-Food’ Research Go Next?—Visualisation Review and Prospect," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    4. Yang, Xuechun & Wang, Yutao & Sun, Mingxing & Wang, Renqing & Zheng, Peiming, 2018. "Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 228(C), pages 2298-2307.
    5. Zhang, Dongcheng & Jiang, Hanchen & Qiang, Maoshan, 2023. "Public attitudes toward hydropower in China: The role of information provision and partisan identification," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    6. Schlör, Holger & Märker, Carolin & Venghaus, Sandra, 2021. "Developing a nexus systems thinking test –A qualitative multi- and mixed methods analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ptak, Thomas & Crootof, Arica & Harlan, Tyler & Kelly, Sarah, 2022. "Critically evaluating the purported global “boom” in small hydropower development through spatial and temporal analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Zhang, Lixiao & Pang, Mingyue & Bahaj, AbuBakr S. & Yang, Yongchuan & Wang, Changbo, 2021. "Small hydropower development in China: Growing challenges and transition strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Beatriz Mayor & Ignacio Rodríguez-Muñoz & Fermín Villarroya & Esperanza Montero & Elena López-Gunn, 2017. "The Role of Large and Small Scale Hydropower for Energy and Water Security in the Spanish Duero Basin," Sustainability, MDPI, vol. 9(10), pages 1-21, October.
    4. Li, Yun & Li, Yanbin & Ji, Pengfei & Yang, Jing, 2015. "The status quo analysis and policy suggestions on promoting China׳s hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1071-1079.
    5. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    6. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.
    7. Xu, Jiuping & Ni, Ting, 2017. "Integrated technological paradigm-based soft paths towards sustainable development of small hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 623-634.
    8. Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Chen, Fu & Li, Weidong, 2018. "Hydropower curtailment in Yunnan Province, southwestern China: Constraint analysis and suggestions," Renewable Energy, Elsevier, vol. 121(C), pages 700-711.
    9. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    10. Zhou, Yanlai & Chang, Li-Chiu & Uen, Tin-Shuan & Guo, Shenglian & Xu, Chong-Yu & Chang, Fi-John, 2019. "Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus," Applied Energy, Elsevier, vol. 238(C), pages 668-682.
    11. Wagner, Beatrice & Hauer, Christoph & Schoder, Angelika & Habersack, Helmut, 2015. "A review of hydropower in Austria: Past, present and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 304-314.
    12. Chang, Jianxia & Li, Yunyun & Yuan, Meng & Wang, Yimin, 2017. "Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China," Energy, Elsevier, vol. 135(C), pages 23-31.
    13. Chen, Shaoqing & Chen, Bin & Fath, Brian D., 2015. "Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 78-92.
    14. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    15. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    16. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    17. Katarzyna Kubiak-Wójcicka & Leszek Szczęch, 2021. "Dynamics of Electricity Production against the Backdrop of Climate Change: A Case Study of Hydropower Plants in Poland," Energies, MDPI, vol. 14(12), pages 1-24, June.
    18. Du, Hailong & Yang, Liu & Wang, Wenzhong & Lu, Lunhui & Li, Zhe, 2022. "Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze," Ecological Modelling, Elsevier, vol. 468(C).
    19. Li, Mingquan & Patiño-Echeverri, Dalia & Zhang, Junfeng (Jim), 2019. "Policies to promote energy efficiency and air emissions reductions in China's electric power generation sector during the 11th and 12th five-year plan periods: Achievements, remaining challenges, and ," Energy Policy, Elsevier, vol. 125(C), pages 429-444.
    20. Cheng, Chuntian & Liu, Benxi & Chau, Kwok-Wing & Li, Gang & Liao, Shengli, 2015. "China׳s small hydropower and its dispatching management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 43-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:1232-1246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.