IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip2p3032-3040.html
   My bibliography  Save this article

Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture

Author

Listed:
  • Pang, Mingyue
  • Zhang, Lixiao
  • Bahaj, AbuBakr S.
  • Xu, Kaipeng
  • Hao, Yan
  • Wang, Changbo

Abstract

Due to its large hydraulic power potential, Tibet has been proposed as the main hydropower development base in China after 2020. This is likely to result in the construction of large and medium sized hydropower projects in this region. To date, small hydropower (SHP) has played an essential role in rural electrification in Tibet. Here we present a review of the status of SHP plants in Tibet and explore its potential based on a field survey conducted in the summer of 2014 in Nagqu Prefecture. The survey revealed that SHP in Nagqu has made it possible for approximately 80,000 local residents (16.3% of the total population) to have access to electricity. Our study shows that SHP suffers from problems such as low utilization of the installed power capacity, high scrap ratio, and has severe impacts on the local ecosystem. Moreover, the role of SHP in Tibet's rural electrification is gradually changing with the arrival of the main power grid, which has also impacted existing SHP plants. In order to improve SHP overall sustainability, optimization of existing plants and construction of new plants with higher standards are deemed necessary. This has to be done with due consideration to the fragile ecosystem in Tibet. Therefore, any expansion in the development of SHP in Tibet should have an appropriate strategy for sustainability and ecosystems conservation and protection.

Suggested Citation

  • Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:3032-3040
    DOI: 10.1016/j.rser.2017.06.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117310547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.06.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    2. Luo, Guo-liang & Zhang, Xinghua, 2012. "Universalization of access to modern energy services in Tibetan rural households—Renewable energy's exploitation, utilization, and policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2373-2380.
    3. Wang, Qiang, 2009. "Prevention of Tibetan eco-environmental degradation caused by traditional use of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2562-2570, December.
    4. Hennig, Thomas & Wang, Wenling & Feng, Yan & Ou, Xiaokun & He, Daming, 2013. "Review of Yunnan's hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 585-595.
    5. Zhou, Sheng & Zhang, Xiliang & Liu, Jinghe, 2009. "The trend of small hydropower development in China," Renewable Energy, Elsevier, vol. 34(4), pages 1078-1083.
    6. Zhang, Da & Chai, Qimin & Zhang, Xiliang & He, Jiankun & Yue, Li & Dong, Xiufen & Wu, Shu, 2012. "Economical assessment of large-scale photovoltaic power development in China," Energy, Elsevier, vol. 40(1), pages 370-375.
    7. Kumar, Deepak & Katoch, S.S., 2014. "Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 87-101.
    8. Chen, Xiaojian & Wang, Zhenyu & He, Sanfeng & Li, Fuqiang, 2013. "Programme management of world bank financed small hydropower development in Zhejiang Province in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 21-31.
    9. Luo, Guo-liang & Guo, Yi-wei, 2013. "Rural electrification in China: A policy and institutional analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 320-329.
    10. Huang, Hailun & Yan, Zheng, 2009. "Present situation and future prospect of hydropower in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1652-1656, August.
    11. Wang, Qiang & Qiu, Huan-Ning, 2009. "Situation and outlook of solar energy utilization in Tibet, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2181-2186, October.
    12. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    13. Liu, Gang & Lucas, Mario & Shen, Lei, 2008. "Rural household energy consumption and its impacts on eco-environment in Tibet: Taking Taktse county as an example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1890-1908, September.
    14. Kong, Yigang & Wang, Jie & Kong, Zhigang & Song, Furong & Liu, Zhiqi & Wei, Congmei, 2015. "Small hydropower in China: The survey and sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 425-433.
    15. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    16. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    17. Cheng, Chuntian & Liu, Benxi & Chau, Kwok-Wing & Li, Gang & Liao, Shengli, 2015. "China׳s small hydropower and its dispatching management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 43-55.
    18. Zhang, Jing & Luo, Chuan-Yan & Curtis, Zachary & Deng, Shi-huai & Wu, Yang & Li, Yuan-wei, 2015. "Carbon dioxide emission accounting for small hydropower plants—A case study in southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 755-761.
    19. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    20. Kong, Yigang & Kong, Zhigang & Liu, Zhiqi & Wei, Congmei & An, Gaocheng, 2016. "Substituting small hydropower for fuel: The practice of China and the sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 978-991.
    21. Ping, Xiaoge & Jiang, Zhigang & Li, Chunwang, 2011. "Status and future perspectives of energy consumption and its ecological impacts in the Qinghai-Tibet region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 514-523, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xudong & Li, Chaohui & Shao, Ling & Meng, Jing & Zhang, Lixiao & Chen, Guoqian, 2021. "Is solar power renewable and carbon-neutral: Evidence from a pilot solar tower plant in China under a systems view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    3. Zhang, Lixiao & Pang, Mingyue & Bahaj, AbuBakr S. & Yang, Yongchuan & Wang, Changbo, 2021. "Small hydropower development in China: Growing challenges and transition strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    5. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    6. Michał Bernard Pietrzak & Bartłomiej Igliński & Wojciech Kujawski & Paweł Iwański, 2021. "Energy Transition in Poland—Assessment of the Renewable Energy Sector," Energies, MDPI, vol. 14(8), pages 1-23, April.
    7. Teegala Srinivasa Kishore & Epari Ritesh Patro & V. S. K. V. Harish & Ali Torabi Haghighi, 2021. "A Comprehensive Study on the Recent Progress and Trends in Development of Small Hydropower Projects," Energies, MDPI, vol. 14(10), pages 1-31, May.
    8. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lixiao & Pang, Mingyue & Bahaj, AbuBakr S. & Yang, Yongchuan & Wang, Changbo, 2021. "Small hydropower development in China: Growing challenges and transition strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Cheng, Chuntian & Liu, Benxi & Chau, Kwok-Wing & Li, Gang & Liao, Shengli, 2015. "China׳s small hydropower and its dispatching management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 43-55.
    3. Wang, Menghan & Liu, Zhong & Xu, Aiyan & Yang, Dan, 2022. "Fuel choice for rural Tibetan households: Impacts of access to credit," Energy Economics, Elsevier, vol. 115(C).
    4. Ding, Wenguang & Xu, Luan & Ye, Weifeng, 2014. "A comparative study of bioenergy consumption and CO2 emissions in Tibetan region of China," Renewable Energy, Elsevier, vol. 71(C), pages 344-350.
    5. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    6. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    7. Ping, Xiaoge & Jiang, Zhigang & Li, Chunwang, 2012. "Social and ecological effects of biomass utilization and the willingness to use clean energy in the eastern Qinghai–Tibet plateau," Energy Policy, Elsevier, vol. 51(C), pages 828-833.
    8. Wu, Shu, 2020. "The evolution of rural energy policies in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Xu, Jiuping & Ni, Ting, 2017. "Integrated technological paradigm-based soft paths towards sustainable development of small hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 623-634.
    10. Ptak, Thomas & Crootof, Arica & Harlan, Tyler & Kelly, Sarah, 2022. "Critically evaluating the purported global “boom” in small hydropower development through spatial and temporal analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Li, Yun & Li, Yanbin & Ji, Pengfei & Yang, Jing, 2015. "The status quo analysis and policy suggestions on promoting China׳s hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1071-1079.
    12. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    13. Zhou, Yanlai & Chang, Li-Chiu & Uen, Tin-Shuan & Guo, Shenglian & Xu, Chong-Yu & Chang, Fi-John, 2019. "Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus," Applied Energy, Elsevier, vol. 238(C), pages 668-682.
    14. Xueyan Zhao & Haili Zhao & Lu Jiang & Chenyu Lu & Bing Xue, 2018. "The Influence of Farmers’ Livelihood Strategies on Household Energy Consumption in the Eastern Qinghai–Tibet Plateau, China," Sustainability, MDPI, vol. 10(6), pages 1-12, May.
    15. Xiaoxia Zhang & Tonggang Zha & Yun Zhao & Jing Qin & Zhiyuan Lyv & Zhijie Ma & Haiyan Yu & Yushen Zhu & Gaomin Wang & Felix Tettenborn & Benedikt Freiherr von Lueninck, 2017. "Sustainable Effects of Small Hydropower Substituting Firewood Program in Majiang County, Guizhou Province, China," Sustainability, MDPI, vol. 9(6), pages 1-16, June.
    16. Li, Yongcai & Li, Wuyan & Liu, Zongsheng & Lu, Jun & Zeng, Liyue & Yang, Lulu & Xie, Ling, 2017. "Theoretical and numerical study on performance of the air-source heat pump system in Tibet," Renewable Energy, Elsevier, vol. 114(PB), pages 489-501.
    17. Chang, Jianxia & Li, Yunyun & Yuan, Meng & Wang, Yimin, 2017. "Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China," Energy, Elsevier, vol. 135(C), pages 23-31.
    18. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    19. Hennig, Thomas, 2016. "Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1232-1246.
    20. Wang, Feifei & Chen, Diyi & Xu, Beibei & Zhang, Hao, 2016. "Nonlinear dynamics of a novel fractional-order Francis hydro-turbine governing system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 329-338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:3032-3040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.