IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3166-d1373278.html
   My bibliography  Save this article

A Fuzzy Ballast Water Risk Assessment Model in Maritime Transport

Author

Listed:
  • Konstantina Mouchtoglou

    (Department of Industrial Design and Production Engineering, University of West Attica, 12241 Egaleo, Greece)

  • Paraskevi Zacharia

    (Department of Industrial Design and Production Engineering, University of West Attica, 12241 Egaleo, Greece)

  • Grigoris Nikolaou

    (Department of Industrial Design and Production Engineering, University of West Attica, 12241 Egaleo, Greece)

Abstract

Recent years have witnessed a growing awareness of the critical role that maritime transport plays in global sustainability, given its significant environmental, economic, and social impacts. Central to this concern is the management of ballast water, which, if not properly treated, can lead to the introduction of invasive species, biodiversity loss, and substantial economic and health repercussions. Traditional risk assessment models often fail to capture the complex uncertainties inherent in environmental risks associated with ballast water. This study introduces an innovative fuzzy logic-based risk assessment model designed to enhance decision-making processes in maritime operations by accurately assessing and mitigating the environmental risks of ballast water discharge. The model, structured using three fuzzy systems, integrates human reasoning with mathematical precision, providing an effective tool for sustainable maritime practices. The integrated fuzzy system employs 18 variables as inputs and yields three outputs (ballasting, ballast exchange, and de-ballasting risk). To evaluate the performance of the developed system, various data sets are used and tested through the MATLAB Fuzzy Toolbox. By aligning maritime operations with sustainability principles, this research contributes to the preservation of marine ecosystems, supports the economic stability of marine-dependent industries, and safeguards public health, underscoring the interconnectivity of maritime transport management with overarching sustainability objectives.

Suggested Citation

  • Konstantina Mouchtoglou & Paraskevi Zacharia & Grigoris Nikolaou, 2024. "A Fuzzy Ballast Water Risk Assessment Model in Maritime Transport," Sustainability, MDPI, vol. 16(8), pages 1-26, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3166-:d:1373278
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Te Wang & Zongkun Li & Wei Ge & Yadong Zhang & Yutie Jiao & Hua Zhang & Heqiang Sun & Pieter Gelder, 2023. "Risk assessment methods of cascade reservoir dams: a review and reflection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1601-1622, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uflaz, Esma & Sezer, Sukru Ilke & Tunçel, Ahmet Lutfi & Aydin, Muhammet & Akyuz, Emre & Arslan, Ozcan, 2024. "Quantifying potential cyber-attack risks in maritime transportation under Dempster–Shafer theory FMECA and rule-based Bayesian network modelling," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Obeng, Francis & Domeh, Daniel & Khan, Faisal & Bose, Neil & Sanli, Elizabeth, 2024. "An operational risk management approach for small fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3166-:d:1373278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.