IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i2d10.1007_s11069-020-04357-2.html
   My bibliography  Save this article

An accentuated “hot blob” over Vidarbha, India, during the pre-monsoon season

Author

Listed:
  • N. Naveena

    (K L University)

  • G. Ch. Satyanarayana

    (K L University)

  • D. V. Bhaskar Rao

    (Andhra University)

  • D. Srinivas

    (Ministry of Earth Sciences)

Abstract

A “hot blob”, distinct hot region, is identified over Vidarbha in the south-central parts of the Indian subcontinent during the pre-monsoon season from the analysis of gridded surface air maximum temperature data from India Meteorological Department for the period 1951–2019. Spatial distribution and frequencies of temperatures > 40 °C and > 42 °C establish the hot blob over Vidarbha region. A similar analysis of simulated maximum temperatures from the NEX-GDDP substantiates the revelation of the “hot blob” over Vidarbha. Further, analysis of the wind circulation at 850 hPa over South Asia region indicates that the “COL” region between the two seasonal high-pressure systems over the Indian Ocean seas, Bay of Bengal and Arabian Sea promotes accumulation of heat over Vidarbha. Further, horizontal temperature convergence complimented by strong local heating of the black soil aids and abets the sustenance of the “hot blob”. This “hot blob” region is observed to be hotter as well as having higher frequencies of hot days than the north-west desert Rajasthan region and assumes importance as its modulation causes heatwaves over the south-east coastal regions. This study establishes the presence of the hottest region over Vidarbha in south-central parts, paradoxically hotter than the desert north-west region of India.

Suggested Citation

  • N. Naveena & G. Ch. Satyanarayana & D. V. Bhaskar Rao & D. Srinivas, 2021. "An accentuated “hot blob” over Vidarbha, India, during the pre-monsoon season," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1359-1373, January.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04357-2
    DOI: 10.1007/s11069-020-04357-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04357-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04357-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott B. Power & François P. D. Delage, 2019. "Setting and smashing extreme temperature records over the coming century," Nature Climate Change, Nature, vol. 9(7), pages 529-534, July.
    2. Anton Orlov & Jana Sillmann & Asbjørn Aaheim & Kristin Aunan & Karianne Bruin, 2019. "Economic Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case Study of Europe," Economics of Disasters and Climate Change, Springer, vol. 3(3), pages 191-211, October.
    3. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    4. Venkata B. Dodla & G. Ch. Satyanarayana & Srinivas Desamsetti, 2017. "Analysis and prediction of a catastrophic Indian coastal heat wave of 2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 395-414, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoe E. Petropoulos & Oriana Ramirez-Rubio & Madeleine K. Scammell & Rebecca L. Laws & Damaris Lopez-Pilarte & Juan José Amador & Joan Ballester & Cristina O’Callaghan-Gordo & Daniel R. Brooks, 2021. "Climate Trends at a Hotspot of Chronic Kidney Disease of Unknown Causes in Nicaragua, 1973–2014," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    2. Savin Chand & Scott Power & Kevin Walsh & Neil Holbrook & Kathleen McInnes & Kevin Tory & Hamish Ramsay & Ron Hoeke & Anthony S. Kiem, 2023. "Climate processes and drivers in the Pacific and global warming: a review for informing Pacific planning agencies," Climatic Change, Springer, vol. 176(2), pages 1-16, February.
    3. Coderoni, Silvia & Pagliacci, Francesco, 2023. "The impact of climate change on land productivity. A micro-level assessment for Italian farms," Agricultural Systems, Elsevier, vol. 205(C).
    4. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    5. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Frances C. Moore, 2017. "Learning, Adaptation, And Weather In A Changing Climate," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-21, November.
    7. Dae II Jeong & Alex J. Cannon & Bin Yu, 2022. "Influences of atmospheric blocking on North American summer heatwaves in a changing climate: a comparison of two Canadian Earth system model large ensembles," Climatic Change, Springer, vol. 172(1), pages 1-21, May.
    8. Lester Lusher & Tim Ruberg, 2024. "Unveiling the Unseen Illness: Public Health Warnings and Heat Stroke," Keio-IES Discussion Paper Series 2024-020, Institute for Economics Studies, Keio University.
    9. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    10. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Xiaoting Sun & Qinghua Ding & Shih-Yu Simon Wang & Dániel Topál & Qingquan Li & Christopher Castro & Haiyan Teng & Rui Luo & Yihui Ding, 2022. "Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Frank A. La Sorte & Alison Johnston & Toby R. Ault, 2021. "Global trends in the frequency and duration of temperature extremes," Climatic Change, Springer, vol. 166(1), pages 1-14, May.
    13. Zhang, Peng & Li, Kefeng & Liu, Qingyuan & Zou, Qingping & Liang, Ruifeng & Qin, Leilei & Wang, Yuanming, 2024. "Thermal stratification characteristics and cooling water shortage risks for pumped storage reservoir–green data centers under extreme climates," Renewable Energy, Elsevier, vol. 229(C).
    14. Auke M. Woude & Wouter Peters & Emilie Joetzjer & Sébastien Lafont & Gerbrand Koren & Philippe Ciais & Michel Ramonet & Yidi Xu & Ana Bastos & Santiago Botía & Stephen Sitch & Remco Kok & Tobias Kneue, 2023. "Temperature extremes of 2022 reduced carbon uptake by forests in Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Zigeng Niu & Lan Feng & Xinxin Chen & Xiuping Yi, 2021. "Evaluation and Future Projection of Extreme Climate Events in the Yellow River Basin and Yangtze River Basin in China Using Ensembled CMIP5 Models Data," IJERPH, MDPI, vol. 18(11), pages 1-26, June.
    16. Friederike E. L. Otto & Sjoukje Philip & Sarah Kew & Sihan Li & Andrew King & Heidi Cullen, 2018. "Attributing high-impact extreme events across timescales—a case study of four different types of events," Climatic Change, Springer, vol. 149(3), pages 399-412, August.
    17. Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    18. Gabriele Lobaccaro & Juan Angel Acero & Gerardo Sanchez Martinez & Ales Padro & Txomin Laburu & German Fernandez, 2019. "Effects of Orientations, Aspect Ratios, Pavement Materials and Vegetation Elements on Thermal Stress inside Typical Urban Canyons," IJERPH, MDPI, vol. 16(19), pages 1-29, September.
    19. Anna Gloria Billé & Marco Rogna, 2022. "The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 3-36, January.
    20. Gaupp, Franziska & Hall, Jim & Mitchell, Dann & Dadson, Simon, 2019. "Increasing risks of multiple breadbasket failure under 1.5 and 2 °C global warming," Agricultural Systems, Elsevier, vol. 175(C), pages 34-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04357-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.