IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27491-2.html
   My bibliography  Save this article

Quantifying uncertainty in aggregated climate change risk assessments

Author

Listed:
  • Luke J. Harrington

    (Victoria University of Wellington)

  • Carl-Friedrich Schleussner

    (Climate Analytics
    Humboldt University)

  • Friederike E. L. Otto

    (Imperial College London)

Abstract

High-level assessments of climate change impacts aggregate multiple perils into a common framework. This requires incorporating multiple dimensions of uncertainty. Here we propose a methodology to transparently assess these uncertainties within the ‘Reasons for Concern’ framework, using extreme heat as a case study. We quantitatively discriminate multiple dimensions of uncertainty, including future vulnerability and exposure to changing climate hazards. High risks from extreme heat materialise after 1.5–2 °C and very high risks between 2–3.5 °C of warming. Risks emerge earlier if global assessments were based on national risk thresholds, underscoring the need for stringent mitigation to limit future extreme heat risks.

Suggested Citation

  • Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27491-2
    DOI: 10.1038/s41467-021-27491-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27491-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27491-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tanya Fiedler & Andy J. Pitman & Kate Mackenzie & Nick Wood & Christian Jakob & Sarah E. Perkins-Kirkpatrick, 2021. "Business risk and the emergence of climate analytics," Nature Climate Change, Nature, vol. 11(2), pages 87-94, February.
    2. Sonia I. Seneviratne & Markus G. Donat & Andy J. Pitman & Reto Knutti & Robert L. Wilby, 2016. "Allowable CO2 emissions based on regional and impact-related climate targets," Nature, Nature, vol. 529(7587), pages 477-483, January.
    3. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
    4. Andrew D. King & David J. Karoly & Benjamin J. Henley, 2017. "Australian climate extremes at 1.5 °C and 2 °C of global warming," Nature Climate Change, Nature, vol. 7(6), pages 412-416, June.
    5. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Author Correction: Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(8), pages 750-750, August.
    6. Marina Andrijevic & Jesus Crespo Cuaresma & Raya Muttarak & Carl-Friedrich Schleussner, 2020. "Governance in socioeconomic pathways and its role for future adaptive capacity," Nature Sustainability, Nature, vol. 3(1), pages 35-41, January.
    7. Friederike Otto & Emily Boyd & Richard Jones & Rosalind Cornforth & Rachel James & Hannah Parker & Myles Allen, 2015. "Attribution of extreme weather events in Africa: a preliminary exploration of the science and policy implications," Climatic Change, Springer, vol. 132(4), pages 531-543, October.
    8. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    9. Jeremy S. Pal & Elfatih A. B. Eltahir, 2016. "Future temperature in southwest Asia projected to exceed a threshold for human adaptability," Nature Climate Change, Nature, vol. 6(2), pages 197-200, February.
    10. Jochem Marotzke & Christian Jakob & Sandrine Bony & Paul A. Dirmeyer & Paul A. O'Gorman & Ed Hawkins & Sarah Perkins-Kirkpatrick & Corinne Le Quéré & Sophie Nowicki & Katsia Paulavets & Sonia I. Senev, 2017. "Climate research must sharpen its view," Nature Climate Change, Nature, vol. 7(2), pages 89-91, February.
    11. Luke J. Harrington & Friederike E. L. Otto, 2020. "Reconciling theory with the reality of African heatwaves," Nature Climate Change, Nature, vol. 10(9), pages 796-798, September.
    12. Matthew E. Kahn, 2005. "The Death Toll from Natural Disasters: The Role of Income, Geography, and Institutions," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 271-284, May.
    13. Marina Andrijevic & Jesus Crespo Cuaresma & Tabea Lissner & Adelle Thomas & Carl-Friedrich Schleussner, 2020. "Overcoming gender inequality for climate resilient development," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    14. Carl-Friedrich Schleussner & Peter Pfleiderer & Erich M. Fischer, 2017. "In the observational record half a degree matters," Nature Climate Change, Nature, vol. 7(7), pages 460-462, July.
    15. Camilo Mora & Bénédicte Dousset & Iain R. Caldwell & Farrah E. Powell & Rollan C. Geronimo & Coral R. Bielecki & Chelsie W. W. Counsell & Bonnie S. Dietrich & Emily T. Johnston & Leo V. Louis & Matthe, 2017. "Global risk of deadly heat," Nature Climate Change, Nature, vol. 7(7), pages 501-506, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tessa Möller & Annika Ernest Högner & Carl-Friedrich Schleussner & Samuel Bien & Niklas H. Kitzmann & Robin D. Lamboll & Joeri Rogelj & Jonathan F. Donges & Johan Rockström & Nico Wunderling, 2024. "Achieving net zero greenhouse gas emissions critical to limit climate tipping risks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Luke J. Harrington & Dave Frame, 2022. "Extreme heat in New Zealand: a synthesis," Climatic Change, Springer, vol. 174(1), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Lüthi & Christopher Fairless & Erich M. Fischer & Noah Scovronick & Armstrong & Micheline De Sousa Zanotti Stagliorio Coelho & Yue Leon Guo & Yuming Guo & Yasushi Honda & Veronika Huber & Jan K, 2023. "Rapid increase in the risk of heat-related mortality," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Flach, Rafaela & Abrahão, Gabriel & Bryant, Benjamin & Scarabello, Marluce & Soterroni, Aline C. & Ramos, Fernando M. & Valin, Hugo & Obersteiner, Michael & Cohn, Avery S., 2021. "Conserving the Cerrado and Amazon biomes of Brazil protects the soy economy from damaging warming," World Development, Elsevier, vol. 146(C).
    3. Kerstin K. Zander & Hunter S. Baggen & Stephen T. Garnett, 2023. "Topic modelling the mobility response to heat and drought," Climatic Change, Springer, vol. 176(4), pages 1-20, April.
    4. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    7. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    8. Kuik, Onno & Zhou, Fujin & Ciullo, Alessio & Brusselaers, Jan, 2022. "How vulnerable is Europe to severe climate-related natural disasters abroad? A dynamic CGE analysis of the international financial and economic impacts of a large hurricane in the southern USA," Conference papers 333438, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    10. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Florian Humpenöder & Alexander Popp & Carl-Friedrich Schleussner & Anton Orlov & Michael Gregory Windisch & Inga Menke & Julia Pongratz & Felix Havermann & Wim Thiery & Fei Luo & Patrick v. Jeetze & J, 2022. "Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Veruska Muccione & Thomas Lontzek & Christian Huggel & Philipp Ott & Nadine Salzmann, 2023. "An application of dynamic programming to local adaptation decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 523-544, October.
    14. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Lucio, D. & Lara, J.L. & Tomás, A. & Losada, I.J., 2024. "Probabilistic assessment of climate-related impacts and risks in ports," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    16. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    17. Arthur Moses & Jean E. T. McLain & Aminata Kilungo & Robert A. Root & Leif Abrell & Sanlyn Buxner & Flor Sandoval & Theresa Foley & Miriam Jones & Mónica D. Ramírez-Andreotta, 2022. "Minding the gap: socio-demographic factors linked to the perception of environmental pollution, water harvesting infrastructure, and gardening characteristics," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(3), pages 594-610, September.
    18. Sitong Yang & Shouwei Li & Xue Rui & Tianxiang Zhao, 2024. "The impact of climate risk on the asset side and liability side of the insurance industry: evidence from China," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-51, June.
    19. Mahshid Ghanbari & Mazdak Arabi & Matei Georgescu & Ashley M. Broadbent, 2023. "The role of climate change and urban development on compound dry-hot extremes across US cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27491-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.