IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v229y2024ics0960148124007651.html
   My bibliography  Save this article

Thermal stratification characteristics and cooling water shortage risks for pumped storage reservoir–green data centers under extreme climates

Author

Listed:
  • Zhang, Peng
  • Li, Kefeng
  • Liu, Qingyuan
  • Zou, Qingping
  • Liang, Ruifeng
  • Qin, Leilei
  • Wang, Yuanming

Abstract

Utilizing the thermal stratification of reservoirs to obtain cold water for cooling green data centers (GDCs) is a new mode of energy conservation and emission reduction. However, global warming is expected to alter this phenomenon in deep reservoirs and thus may affect the digitalization process. While the frequency and intensity of extreme climate (EC) events are increasing under a changing climate, the impacts of these highly destructive events on thermal stratification and the related cascading effects on GDC cold-water supplies are still unclear. A two-lateral-dimensional thermohydrodynamic model was established to determine the characteristics of reservoir thermal stratification changes and its potential water environment impacts based on the heat extreme experienced by the Jinshuitan Reservoir, a large, pumped storage power station (PSPS) with a GDC in southeastern China. Fourteen different PSPS inlet/outlet schemes under 2 climate scenarios were designed, and two new indexes, namely, the risk index of cold-water shortage and the index of thermal stratification, were proposed to explore the impact of extreme climates on GDC water extraction. The results showed that compared to the present climate conditions, the reservoir experienced stronger thermal stratification with a 20.6 % average increase in thermal stability, a longer thermal stratification duration with a transitional trend from seasonal to permanent stratification, and a thinner cold-water layer with a 15-m average decrease. Changes in the thermal stratification of reservoirs under EC conditions will benefit some species, such as diatoms (except for early July and the period from mid-August to early October), green algae and cyanobacteria and the migration of warm-water fish, but adversely impact dissolved oxygen, diatoms and cold-water fish. Furthermore, the risk of cold-water shortages under EC conditions was consistently greater than that under average climate (AC) conditions (traditional assessment) when the elevation of pumped storage intake/outlet was less than 145 m. According to the traditional assessment method, the intake/outlet elevation of pumped storage reservoirs resulted in a 60.27 % increase in the risk of cold-water shortages during climate extremes. Furthermore, the demand for green cold-water withdrawal and optimal pumped storage power generation benefits were met when the PSPS intake/outlet elevation was 145 m. Beyond solving this specific case, this study elucidates the importance of linking the thermal stratification and data center of cold-water withdrawal to ECs. These findings provide new insights for increasing climate change resilience.

Suggested Citation

  • Zhang, Peng & Li, Kefeng & Liu, Qingyuan & Zou, Qingping & Liang, Ruifeng & Qin, Leilei & Wang, Yuanming, 2024. "Thermal stratification characteristics and cooling water shortage risks for pumped storage reservoir–green data centers under extreme climates," Renewable Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:renene:v:229:y:2024:i:c:s0960148124007651
    DOI: 10.1016/j.renene.2024.120697
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124007651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. R. Lamontagne & P. M. Reed & G. Marangoni & K. Keller & G. G. Garner, 2019. "Publisher Correction: Robust abatement pathways to tolerable climate futures require immediate global action," Nature Climate Change, Nature, vol. 9(6), pages 490-490, June.
    2. Xinyu Li & Shushi Peng & Yi Xi & R. Iestyn Woolway & Gang Liu, 2022. "Earlier ice loss accelerates lake warming in the Northern Hemisphere," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. J. R. Lamontagne & P. M. Reed & G. Marangoni & K. Keller & G. G. Garner, 2019. "Robust abatement pathways to tolerable climate futures require immediate global action," Nature Climate Change, Nature, vol. 9(4), pages 290-294, April.
    4. R. Iestyn Woolway & Sapna Sharma & Gesa A. Weyhenmeyer & Andrey Debolskiy & Malgorzata Golub & Daniel Mercado-Bettín & Marjorie Perroud & Victor Stepanenko & Zeli Tan & Luke Grant & Robert Ladwig & Jo, 2021. "Phenological shifts in lake stratification under climate change," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    6. M. D. O’Beirne & J. P. Werne & R. E. Hecky & T. C. Johnson & S. Katsev & E. D. Reavie, 2017. "Anthropogenic climate change has altered primary productivity in Lake Superior," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    7. Ulrike Gabriele Kobler & Alfred Wüest & Martin Schmid, 2019. "Combined effects of pumped-storage operation and climate change on thermal structure and water quality," Climatic Change, Springer, vol. 152(3), pages 413-429, March.
    8. Shu Zhang & Wenying Chen, 2022. "Assessing the energy transition in China towards carbon neutrality with a probabilistic framework," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Jun Wang & Yang Chen & Simon F. B. Tett & Zhongwei Yan & Panmao Zhai & Jinming Feng & Jiangjiang Xia, 2020. "Anthropogenically-driven increases in the risks of summertime compound hot extremes," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    10. Julian D. Hunt & Edward Byers & Yoshihide Wada & Simon Parkinson & David E. H. J. Gernaat & Simon Langan & Detlef P. Vuuren & Keywan Riahi, 2020. "Global resource potential of seasonal pumped hydropower storage for energy and water storage," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    11. Ji, Qianfeng & Li, Kefeng & Wang, Yuanming & Feng, Jingjie & Li, Ran & Liang, Ruifeng, 2022. "Effect of floating photovoltaic system on water temperature of deep reservoir and assessment of its potential benefits, a case on Xiangjiaba Reservoir with hydropower station," Renewable Energy, Elsevier, vol. 195(C), pages 946-956.
    12. G. Sahoo & S. Schladow & J. Reuter & R. Coats & M. Dettinger & J. Riverson & B. Wolfe & M. Costa-Cabral, 2013. "The response of Lake Tahoe to climate change," Climatic Change, Springer, vol. 116(1), pages 71-95, January.
    13. Matteo Giuliani & Jonathan R. Lamontagne & Mohamad I. Hejazi & Patrick M. Reed & Andrea Castelletti, 2022. "Unintended consequences of climate change mitigation for African river basins," Nature Climate Change, Nature, vol. 12(2), pages 187-192, February.
    14. Elvira S. Poloczanska & Christopher J. Brown & William J. Sydeman & Wolfgang Kiessling & David S. Schoeman & Pippa J. Moore & Keith Brander & John F. Bruno & Lauren B. Buckley & Michael T. Burrows & C, 2013. "Global imprint of climate change on marine life," Nature Climate Change, Nature, vol. 3(10), pages 919-925, October.
    15. He, Wei & Zhang, Xufan & Zhang, Jian & Xu, Hui & Zhou, Hongxing, 2023. "Regulating outflow temperature for multi-objective operation of cascade reservoirs: A case study," Renewable Energy, Elsevier, vol. 211(C), pages 155-165.
    16. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    17. Liu, Haidong & Zheng, Zhongquan C. & Young, Bryan & Harris, Ted D., 2019. "Three-dimensional numerical modeling of the cyanobacterium Microcystis transport and its population dynamics in a large freshwater reservoir," Ecological Modelling, Elsevier, vol. 398(C), pages 20-34.
    18. Shuja, Junaid & Gani, Abdullah & Shamshirband, Shahaboddin & Ahmad, Raja Wasim & Bilal, Kashif, 2016. "Sustainable Cloud Data Centers: A survey of enabling techniques and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 195-214.
    19. Daniel Oudin Åström & Bertil Forsberg & Kristie L. Ebi & Joacim Rocklöv, 2013. "Attributing mortality from extreme temperatures to climate change in Stockholm, Sweden," Nature Climate Change, Nature, vol. 3(12), pages 1050-1054, December.
    20. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    21. R. Iestyn Woolway, 2023. "The pace of shifting seasons in lakes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    22. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    23. Yang, Shiwei & Zhang, Zhongwei & Ji, Qianfeng & Liang, Ruifeng & Li, Kefeng, 2023. "Study on the water temperature distribution characteristics of a mixed pumped storage power station reservoir: A case study of Jinshuitan Reservoir," Renewable Energy, Elsevier, vol. 202(C), pages 1012-1020.
    24. Ulrike Gabriele Kobler & Alfred Wüest & Martin Schmid, 2018. "Effects of Lake–Reservoir Pumped-Storage Operations on Temperature and Water Quality," Sustainability, MDPI, vol. 10(6), pages 1-15, June.
    25. Kong, Yigang & Kong, Zhigang & Liu, Zhiqi & Wei, Congmei & Zhang, Jingfang & An, Gaocheng, 2017. "Pumped storage power stations in China: The past, the present, and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 720-731.
    26. Kanyako, Franklyn & Lamontagne, Jonathan & Baker, Erin & Turner, Sean & Wild, Thomas, 2023. "Seasonality and trade in hydro-heavy electricity markets: A case study with the West Africa Power Pool (WAPP)," Applied Energy, Elsevier, vol. 329(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. R. Iestyn Woolway, 2023. "The pace of shifting seasons in lakes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yang, Shiwei & Zhang, Zhongwei & Ji, Qianfeng & Liang, Ruifeng & Li, Kefeng, 2023. "Study on the water temperature distribution characteristics of a mixed pumped storage power station reservoir: A case study of Jinshuitan Reservoir," Renewable Energy, Elsevier, vol. 202(C), pages 1012-1020.
    4. Puertas, Rosa & Guaita-Martinez, José M. & Marti, Luisa, 2023. "Analysis of the impact of university policies on society's environmental perception," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    5. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    6. Connor, Jeffery D. & Summers, David & Regan, Courtney & Abbott, Hayley & Van Der Linden, Leon & Frizenschaf, Jacqueline, 2022. "Sensitivity analysis in economic evaluation of payments for water and carbon ecosystem services," Ecosystem Services, Elsevier, vol. 54(C).
    7. Zoe E. Petropoulos & Oriana Ramirez-Rubio & Madeleine K. Scammell & Rebecca L. Laws & Damaris Lopez-Pilarte & Juan José Amador & Joan Ballester & Cristina O’Callaghan-Gordo & Daniel R. Brooks, 2021. "Climate Trends at a Hotspot of Chronic Kidney Disease of Unknown Causes in Nicaragua, 1973–2014," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    8. Coderoni, Silvia & Pagliacci, Francesco, 2023. "The impact of climate change on land productivity. A micro-level assessment for Italian farms," Agricultural Systems, Elsevier, vol. 205(C).
    9. Andrej Predin & Matej Fike & Marko Pezdevšek & Gorazd Hren, 2021. "Lost Energy of Water Spilled over Hydropower Dams," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    10. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    11. Livia Pitorac & Kaspar Vereide & Leif Lia, 2020. "Technical Review of Existing Norwegian Pumped Storage Plants," Energies, MDPI, vol. 13(18), pages 1-20, September.
    12. Andrew J Allyn & Michael A Alexander & Bradley S Franklin & Felix Massiot-Granier & Andrew J Pershing & James D Scott & Katherine E Mills, 2020. "Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-28, April.
    13. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    14. Abbas Mardani & Dalia Streimikiene & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Mehrbakhsh Nilashi & Ahmad Jusoh & Habib Zare, 2017. "Application of Structural Equation Modeling (SEM) to Solve Environmental Sustainability Problems: A Comprehensive Review and Meta-Analysis," Sustainability, MDPI, vol. 9(10), pages 1-65, October.
    15. Wang, Hao-ran & Feng, Tian-tian & Zhong, Cheng, 2023. "Effectiveness of CO2 cost pass-through to electricity prices under “electricity-carbon” market coupling in China," Energy, Elsevier, vol. 266(C).
    16. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    17. T. Renugadevi & K. Geetha & K. Muthukumar & Zong Woo Geem, 2020. "Optimized Energy Cost and Carbon Emission-Aware Virtual Machine Allocation in Sustainable Data Centers," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    18. Han, Yongming & Cao, Lian & Guo, Qing & Geng, Zhiqiang & Yang, Weiyang & Fan, Jinzhen & Liu, Min, 2024. "Economy and carbon dioxide emissions effects of energy structures in China: Evidence based on a novel AHP-SBMDEA model," Energy, Elsevier, vol. 290(C).
    19. Frances C. Moore, 2017. "Learning, Adaptation, And Weather In A Changing Climate," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-21, November.
    20. Dae II Jeong & Alex J. Cannon & Bin Yu, 2022. "Influences of atmospheric blocking on North American summer heatwaves in a changing climate: a comparison of two Canadian Earth system model large ensembles," Climatic Change, Springer, vol. 172(1), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:229:y:2024:i:c:s0960148124007651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.