IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37309-y.html
   My bibliography  Save this article

Increased impact of heat domes on 2021-like heat extremes in North America under global warming

Author

Listed:
  • Xing Zhang

    (Institute of Atmospheric Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Tianjun Zhou

    (Institute of Atmospheric Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wenxia Zhang

    (Institute of Atmospheric Physics, Chinese Academy of Sciences)

  • Liwen Ren

    (China Meteorological Administration)

  • Jie Jiang

    (Institute of Atmospheric Physics, Chinese Academy of Sciences)

  • Shuai Hu

    (Institute of Atmospheric Physics, Chinese Academy of Sciences)

  • Meng Zuo

    (Institute of Atmospheric Physics, Chinese Academy of Sciences)

  • Lixia Zhang

    (Institute of Atmospheric Physics, Chinese Academy of Sciences)

  • Wenmin Man

    (Institute of Atmospheric Physics, Chinese Academy of Sciences)

Abstract

During summer 2021, Western North America (WNA) experienced an unprecedented heatwave with record-breaking high temperatures associated with a strong anomalous high-pressure system, i.e., a heat dome. Here, we use a flow analog method and find that the heat dome over the WNA can explain half of the magnitude of the anomalous temperature. The intensities of hot extremes associated with similar heat dome-like atmospheric circulations increase faster than background global warming in both historical change and future projection. Such relationship between hot extremes and mean temperature can be partly explained by soil moisture-atmosphere feedback. The probability of 2021-like heat extremes is projected to increase due to the background warming, the enhanced soil moisture-atmosphere feedback and the weak but still significantly increased probability of the heat dome-like circulation. The population exposure to such heat extremes will also increase. Limiting global warming to 1.5 °C instead of 2 °C (3 °C) would lead to an avoided impact of 53% (89%) of the increase in population exposure to 2021-like heat extremes under the RCP8.5-SSP5 scenario.

Suggested Citation

  • Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37309-y
    DOI: 10.1038/s41467-023-37309-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37309-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37309-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel E. Horton & Nathaniel C. Johnson & Deepti Singh & Daniel L. Swain & Bala Rajaratnam & Noah S. Diffenbaugh, 2015. "Contribution of changes in atmospheric circulation patterns to extreme temperature trends," Nature, Nature, vol. 522(7557), pages 465-469, June.
    2. Daniel Oudin Åström & Bertil Forsberg & Kristie L. Ebi & Joacim Rocklöv, 2013. "Attributing mortality from extreme temperatures to climate change in Stockholm, Sweden," Nature Climate Change, Nature, vol. 3(12), pages 1050-1054, December.
    3. E. M. Fischer & S. Sippel & R. Knutti, 2021. "Increasing probability of record-shattering climate extremes," Nature Climate Change, Nature, vol. 11(8), pages 689-695, August.
    4. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    5. Wenxia Zhang & Tianjun Zhou & Liwei Zou & Lixia Zhang & Xiaolong Chen, 2018. "Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    6. Jun Wang & Yang Chen & Simon F. B. Tett & Zhongwei Yan & Panmao Zhai & Jinming Feng & Jiangjiang Xia, 2020. "Anthropogenically-driven increases in the risks of summertime compound hot extremes," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Bryan Jones & Claudia Tebaldi & Brian C. O’Neill & Keith Oleson & Jing Gao, 2018. "Avoiding population exposure to heat-related extremes: demographic change vs climate change," Climatic Change, Springer, vol. 146(3), pages 423-437, February.
    8. Zeke Hausfather & Kate Marvel & Gavin A. Schmidt & John W. Nielsen-Gammon & Mark Zelinka, 2022. "Climate simulations: recognize the ‘hot model’ problem," Nature, Nature, vol. 605(7908), pages 26-29, May.
    9. Camilo Mora & Bénédicte Dousset & Iain R. Caldwell & Farrah E. Powell & Rollan C. Geronimo & Coral R. Bielecki & Chelsie W. W. Counsell & Bonnie S. Dietrich & Emily T. Johnston & Leo V. Louis & Matthe, 2017. "Global risk of deadly heat," Nature Climate Change, Nature, vol. 7(7), pages 501-506, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emily J. Tetzlaff & Nicholas Goulet & Nihal Yapici & Melissa Gorman & Gregory R.A. Richardson & Paddy M. Enright & Glen P. Kenny, 2024. "Beach day or deadly heatwave? Content analysis of media images from the 2021 Heat Dome in Canada," Climatic Change, Springer, vol. 177(5), pages 1-27, May.
    2. Bev Wilson & Shakil Bin Kashem & Lily Slonim, 2024. "Modeling the relationship between urban tree canopy, landscape heterogeneity, and land surface temperature: A machine learning approach," Environment and Planning B, , vol. 51(8), pages 1895-1912, October.
    3. Fenying Cai & Caihong Liu & Dieter Gerten & Song Yang & Tuantuan Zhang & Kaiwen Li & Jürgen Kurths, 2024. "Sketching the spatial disparities in heatwave trends by changing atmospheric teleconnections in the Northern Hemisphere," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Peng & Li, Kefeng & Liu, Qingyuan & Zou, Qingping & Liang, Ruifeng & Qin, Leilei & Wang, Yuanming, 2024. "Thermal stratification characteristics and cooling water shortage risks for pumped storage reservoir–green data centers under extreme climates," Renewable Energy, Elsevier, vol. 229(C).
    2. Samuel Lüthi & Christopher Fairless & Erich M. Fischer & Noah Scovronick & Armstrong & Micheline De Sousa Zanotti Stagliorio Coelho & Yue Leon Guo & Yuming Guo & Yasushi Honda & Veronika Huber & Jan K, 2023. "Rapid increase in the risk of heat-related mortality," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Frances C. Moore, 2017. "Learning, Adaptation, And Weather In A Changing Climate," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-21, November.
    4. Sabrina Katharina Beckmann & Michael Hiete & Michael Schneider & Christoph Beck, 2021. "Heat adaptation measures in private households: an application and adaptation of the protective action decision model," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    5. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Xiaoting Sun & Qinghua Ding & Shih-Yu Simon Wang & Dániel Topál & Qingquan Li & Christopher Castro & Haiyan Teng & Rui Luo & Yihui Ding, 2022. "Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Robert Vautard & Julien Cattiaux & Tamara Happé & Jitendra Singh & Rémy Bonnet & Christophe Cassou & Dim Coumou & Fabio D’Andrea & Davide Faranda & Erich Fischer & Aurélien Ribes & Sebastian Sippel & , 2023. "Heat extremes in Western Europe increasing faster than simulated due to atmospheric circulation trends," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Meng Zhang & Haipeng Yu & Andrew D. King & Yun Wei & Jianping Huang & Yu Ren, 2020. "Greater probability of extreme precipitation under 1.5 °C and 2 °C warming limits over East-Central Asia," Climatic Change, Springer, vol. 162(2), pages 603-619, September.
    9. Giacomo Falchetta & Enrica Cian & Ian Sue Wing & Deborah Carr, 2024. "Global projections of heat exposure of older adults," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Zoe E. Petropoulos & Oriana Ramirez-Rubio & Madeleine K. Scammell & Rebecca L. Laws & Damaris Lopez-Pilarte & Juan José Amador & Joan Ballester & Cristina O’Callaghan-Gordo & Daniel R. Brooks, 2021. "Climate Trends at a Hotspot of Chronic Kidney Disease of Unknown Causes in Nicaragua, 1973–2014," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    11. Yan Xin & Yongming Xu & Xudong Tong & Yaping Mo & Yonghong Liu & Shanyou Zhu, 2024. "Evaluating warming trend over the tibetan plateau based on remotely sensed air temperature from 2001 to 2020," Climatic Change, Springer, vol. 177(8), pages 1-18, August.
    12. Srihari Sundar & Michael T. Craig & Ashley E. Payne & David J. Brayshaw & Flavio Lehner, 2023. "Meteorological drivers of resource adequacy failures in current and high renewable Western U.S. power systems," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    14. Coderoni, Silvia & Pagliacci, Francesco, 2023. "The impact of climate change on land productivity. A micro-level assessment for Italian farms," Agricultural Systems, Elsevier, vol. 205(C).
    15. Shuangzhi Li & Xiaoling Zhang & Zhongci Deng & Xiaokang Liu & Ruoou Yang & Lihao Yin, 2023. "Identifying the Critical Supply Chains for Black Carbon and CO 2 in the Sichuan Urban Agglomeration of Southwest China," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    16. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    17. Greg Lusk, 2017. "The social utility of event attribution: liability, adaptation, and justice-based loss and damage," Climatic Change, Springer, vol. 143(1), pages 201-212, July.
    18. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    19. Zoé A Hamstead, 2024. "Thermal insecurity: Violence of heat and cold in the urban climate refuge," Urban Studies, Urban Studies Journal Limited, vol. 61(3), pages 531-548, February.
    20. Yu. V. Zinchenko & N. E. Terent’ev, 2022. "Risks of Climate Change to Health and Adaptation of the Population: A Review of World Experience and Lessons for Russia," Studies on Russian Economic Development, Springer, vol. 33(6), pages 671-679, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37309-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.