IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v175y2019icp34-45.html
   My bibliography  Save this article

Increasing risks of multiple breadbasket failure under 1.5 and 2 °C global warming

Author

Listed:
  • Gaupp, Franziska
  • Hall, Jim
  • Mitchell, Dann
  • Dadson, Simon

Abstract

The increasingly inter-connected global food system is becoming more vulnerable to production shocks owing to increasing global mean temperatures and more frequent climate extremes. Little is known, however, about the actual risks of multiple breadbasket failure due to extreme weather events. Motivated by the Paris Climate Agreement, this paper quantifies spatial risks to global agriculture in 1.5 and 2 °C warmer worlds. This paper focuses on climate risks posed to three major crops - wheat, soybean and maize - in five major global food producing areas. Climate data from the atmosphere-only HadAM3P model as part of the “Half a degree Additional warming, Prognosis and Projected Impacts” (HAPPI) experiment are used to analyse the risks of climatic extreme events. Using the copula methodology, the risks of simultaneous crop failure in multiple breadbaskets are investigated. Projected losses do not scale linearly with global warming increases between 1.5 and 2 °C Global Mean Temperature (GMT). In general, whilst the differences in yield at 1.5 versus 2 °C are significant they are not as large as the difference between 1.5 °C and the historical baseline which corresponds to 0.85 °C above pre-industrial GMT. Risks of simultaneous crop failure, however, do increase disproportionately between 1.5 and 2 °C, so surpassing the 1.5 °C threshold will represent a threat to global food security. For maize, risks of multiple breadbasket failures increase the most, from 6% to 40% at 1.5 to 54% at 2 °C warming. In relative terms, the highest simultaneous climate risk increase between the two warming scenarios was found for wheat (40%), followed by maize (35%) and soybean (23%). Looking at the impacts on agricultural production, we show that limiting global warming to 1.5 °C would avoid production losses of up to 2753 million (161,000, 265,000) tonnes maize (wheat, soybean) in the global breadbaskets and would reduce the risk of simultaneous crop failure by 26%, 28% and 19% respectively.

Suggested Citation

  • Gaupp, Franziska & Hall, Jim & Mitchell, Dann & Dadson, Simon, 2019. "Increasing risks of multiple breadbasket failure under 1.5 and 2 °C global warming," Agricultural Systems, Elsevier, vol. 175(C), pages 34-45.
  • Handle: RePEc:eee:agisys:v:175:y:2019:i:c:p:34-45
    DOI: 10.1016/j.agsy.2019.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18307674
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    2. Sonia I. Seneviratne & Markus G. Donat & Andy J. Pitman & Reto Knutti & Robert L. Wilby, 2016. "Allowable CO2 emissions based on regional and impact-related climate targets," Nature, Nature, vol. 529(7587), pages 477-483, January.
    3. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    4. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    5. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    6. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    7. S. Asseng & F. Ewert & P. Martre & R. P. Rötter & D. B. Lobell & D. Cammarano & B. A. Kimball & M. J. Ottman & G. W. Wall & J. W. White & M. P. Reynolds & P. D. Alderman & P. V. V. Prasad & P. K. Agga, 2015. "Rising temperatures reduce global wheat production," Nature Climate Change, Nature, vol. 5(2), pages 143-147, February.
    8. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    9. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    2. Prager, Steven D. & Wiebe, Keith D., 2022. "Strategic foresight in One CGIAR: Gaps and needs in approaches and capacity," Other briefs January 2022, International Food Policy Research Institute (IFPRI).
    3. Simon Willcock & Gregory S. Cooper & John Addy & John A. Dearing, 2023. "Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers," Nature Sustainability, Nature, vol. 6(11), pages 1331-1342, November.
    4. Anton Orlov & Anne Sophie Daloz & Jana Sillmann & Wim Thiery & Clara Douzal & Quentin Lejeune & Carl Schleussner, 2021. "Global Economic Responses to Heat Stress Impacts on Worker Productivity in Crop Production," Economics of Disasters and Climate Change, Springer, vol. 5(3), pages 367-390, October.
    5. Sung-Lin Hsueh & Yuan Feng & Yue Sun & Ruqi Jia & Min-Ren Yan, 2021. "Using AI-MCDM Model to Boost Sustainable Energy System Development: A Case Study on Solar Energy and Rainwater Collection in Guangdong Province," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    6. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Asjad Naqvi & Franziska Gaupp & Stefan Hochrainer-Stigler, 2020. "The risk and consequences of multiple breadbasket failures: an integrated copula and multilayer agent-based modeling approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 727-754, September.
    8. Chuang Liu & Huiyi Yang & Kate Gongadze & Paul Harris & Mingbin Huang & Lianhai Wu, 2022. "Climate Change Impacts on Crop Yield of Winter Wheat ( Triticum aestivum ) and Maize ( Zea mays ) and Soil Organic Carbon Stocks in Northern China," Agriculture, MDPI, vol. 12(5), pages 1-12, April.
    9. Prager, Steven & Wiebe, Keith, 2021. "Strategic Foresight in the One CGIAR: Gaps and Needs in Approaches and Capacity," SocArXiv 7kfxv, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    2. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    3. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.
    4. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    5. Zhi, Bangdong & Wang, Xiaojun & Xu, Fangming, 2022. "Managing inventory financing in a volatile market: A novel data-driven copula model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    6. Stöber, Jakob & Joe, Harry & Czado, Claudia, 2013. "Simplified pair copula constructions—Limitations and extensions," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 101-118.
    7. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    8. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    9. Apergis, Nicholas & Gozgor, Giray & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Dependence structure in the Australian electricity markets: New evidence from regular vine copulae," Energy Economics, Elsevier, vol. 90(C).
    10. Jinyu Zhang & Kang Gao & Yong Li & Qiaosen Zhang, 2022. "Maximum Likelihood Estimation Methods for Copula Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 99-124, June.
    11. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    12. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    13. Maziar Sahamkhadam & Andreas Stephan, 2019. "Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for the financial crisis," Papers 1912.10328, arXiv.org.
    14. Talbi, Marwa & Bedoui, Rihab & de Peretti, Christian & Belkacem, Lotfi, 2021. "Is the role of precious metals as precious as they are? A vine copula and BiVaR approaches," Resources Policy, Elsevier, vol. 73(C).
    15. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    16. Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
    17. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    18. Rezitis, Anthony N. & Rokopanos, Andreas, 2019. "Impact of trade liberalisation on dairy market price co-movements between the EU, Oceania, and the United States," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), July.
    19. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    20. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:175:y:2019:i:c:p:34-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.