IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i3d10.1007_s10845-021-01871-3.html
   My bibliography  Save this article

Welding monitoring and defect detection using probability density distribution and functional nonparametric kernel classifier

Author

Listed:
  • Abdallah Amine Melakhsou

    (Ecole Nationale Superieure des Mines de Saint-Etienne)

  • Mireille Batton-Hubert

    (Mines Saint-Etienne, University of Clermont Auvergne, CNRS, UMR 6158 LIMOS, Institut Henri Fayol)

Abstract

Welding fault detection in the industry of hot water tanks remains typically conducted visually or with the assistance of None Destructive Examination, such as X-ray, ultrasound, and penetrant testing. However, this leads to high consumption of time and resources. We propose in this paper a two-level method for automatic welding defect detection and localization. The method is based on the classification of the probability density distributions of the voltage signals underlying the generated stochastic process from the welding operation. In the main phase, we apply a passband filter to the raw signals and use the Kernel Density Estimation to measure the distribution of the filtered signal. The probability density distributions are processed as functional data and classified employing a functional non-parametric kernel classifier. In the second phase, the signal of nonconforming welding is split into segments and their probability density distributions are classified in order to extract the precise location of the defect in the whole signal. The proposed method allows to detect and localize welding defects with high accuracy.

Suggested Citation

  • Abdallah Amine Melakhsou & Mireille Batton-Hubert, 2023. "Welding monitoring and defect detection using probability density distribution and functional nonparametric kernel classifier," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1469-1481, March.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:3:d:10.1007_s10845-021-01871-3
    DOI: 10.1007/s10845-021-01871-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01871-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01871-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhifen Zhang & Shanben Chen, 2017. "Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 207-218, January.
    2. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojirsheibani, Majid & Shaw, Crystal, 2018. "Classification with incomplete functional covariates," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 40-46.
    2. repec:cte:wsrepe:ws120906 is not listed on IDEAS
    3. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    4. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    5. Chung Chang & Yakuan Chen & R. Ogden, 2014. "Functional data classification: a wavelet approach," Computational Statistics, Springer, vol. 29(6), pages 1497-1513, December.
    6. Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
    7. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
    8. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    9. Mante, Claude & Yao, Anne-Francoise & Degiovanni, Claude, 2007. "Principal component analysis of measures, with special emphasis on grain-size curves," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4969-4983, June.
    10. Górecki Tomasz & Krzyśko Mirosław & Wołyński Waldemar, 2015. "Classification Problems Based on Regression Models for Multi-Dimensional Functional Data," Statistics in Transition New Series, Polish Statistical Association, vol. 16(1), pages 97-110, March.
    11. Fabrizio Maturo & Antonio Balzanella & Tonio Di Battista, 2019. "Building Statistical Indicators of Equitable and Sustainable Well-Being in a Functional Framework," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 449-471, December.
    12. Andrés Alonso & David Casado & Sara López-Pintado & Juan Romo, 2014. "Robust Functional Supervised Classification for Time Series," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 325-350, October.
    13. Park, Yeonjoo & Simpson, Douglas G., 2019. "Robust probabilistic classification applicable to irregularly sampled functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 37-49.
    14. Runquan Xiao & Yanling Xu & Zhen Hou & Chao Chen & Shanben Chen, 2022. "An automatic calibration algorithm for laser vision sensor in robotic autonomous welding system," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1419-1432, June.
    15. Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast DD-classification of functional data," Statistical Papers, Springer, vol. 58(4), pages 1055-1089, December.
    16. Zheng, Shurong, 2008. "Selection of components and degrees of smoothing via lasso in high dimensional nonparametric additive models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 164-175, September.
    17. Bücher, Axel & Dette, Holger & Wieczorek, Gabriele, 2011. "Testing model assumptions in functional regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1472-1488, November.
    18. Zhou, Jie, 2011. "Maximum likelihood ratio test for the stability of sequence of Gaussian random processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2114-2127, June.
    19. Wanyou Lv & Jiawen Xiong & Jianqi Shi & Yanhong Huang & Shengchao Qin, 2021. "A deep convolution generative adversarial networks based fuzzing framework for industry control protocols," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 441-457, February.
    20. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    21. Martínez-Camblor, Pablo & Corral, Norberto, 2011. "Repeated measures analysis for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3244-3256, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:3:d:10.1007_s10845-021-01871-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.