IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics095183202400437x.html
   My bibliography  Save this article

Manufacturing system evaluation in terms of system reliability via long short-term memory

Author

Listed:
  • Huang, Cheng-Hao
  • Lin, Yi-Kuei

Abstract

With the development of system reliability evaluation, more and more studies are published by considering more attributes or adopting different calculation methods. However, existing deep learning (DL) approaches for predicting system reliability of a multi-state manufacturing network (MMN) only considering single attribute, such as time or machine failure. A more comprehensive consideration about an MMN is deliberated in this study. The Long Short-Term Memory is then utilized to construct the prediction model to process time series of an MMN data. Through the experimental results, the proposed prediction model outperforms than the existing method and other DL method in terms of root mean square error and mean absolute error. Moreover, the parameter of an MMN and hyperparameter of the proposed prediction model are discussed to investigate the optimized combination for system reliability prediction.

Suggested Citation

  • Huang, Cheng-Hao & Lin, Yi-Kuei, 2024. "Manufacturing system evaluation in terms of system reliability via long short-term memory," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s095183202400437x
    DOI: 10.1016/j.ress.2024.110365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400437X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Lei & He, Bin, 2023. "A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting," Applied Energy, Elsevier, vol. 348(C).
    2. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. Peng, Xiaosheng & Wang, Hongyu & Lang, Jianxun & Li, Wenze & Xu, Qiyou & Zhang, Zuowei & Cai, Tao & Duan, Shanxu & Liu, Fangjie & Li, Chaoshun, 2021. "EALSTM-QR: Interval wind-power prediction model based on numerical weather prediction and deep learning," Energy, Elsevier, vol. 220(C).
    4. Ping-Chen Chang, 2022. "Reliability evaluation and big data analytics architecture for a stochastic flow network with time attribute," Annals of Operations Research, Springer, vol. 311(1), pages 3-18, April.
    5. Huang, Ding-Hsiang & Huang, Cheng-Fu & Lin, Yi-Kuei, 2020. "Exact project reliability for a multi-state project network subject to time and budget constraints," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    7. Niu, Yi-Feng & Wan, Xiao-Yu & Xu, Xiu-Zhen & Ding, Dong, 2020. "Finding all multi-state minimal paths of a multi-state flow network via feasible circulations," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Lin, Yi-Kuei & Huang, Cheng-Fu & Chang, Ping-Chen, 2013. "System reliability evaluation of a touch panel manufacturing system with defect rate and reworking," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 51-60.
    9. Davila-Frias, Alex & Yodo, Nita & Le, Trung & Yadav, Om Prakash, 2023. "A deep neural network and Bayesian method based framework for all-terminal network reliability estimation considering degradation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Gaofeng Da & Maochao Xu & Ping Shing Chan, 2018. "An efficient algorithm for computing the signatures of systems with exchangeable components and applications," IISE Transactions, Taylor & Francis Journals, vol. 50(7), pages 584-595, July.
    11. Bai, Guanghan & Tian, Zhigang & Zuo, Ming J., 2016. "An improved algorithm for finding all minimal paths in a network," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 1-10.
    12. Yeh, Wei-Chang & Du, Chia-Ming & Tan, Shi-Yi & Forghani-elahabad, Majid, 2023. "Application of LSTM based on the BAT-MCS for binary-state network approximated time-dependent reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Yeh, Wei-Chang, 2024. "A new hybrid inequality BAT for comprehensive all-level d-MP identification using minimal paths in Multistate Flow Network reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Huang, Cheng-Hao & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2023. "Network reliability prediction for random capacitated-flow networks via an artificial neural network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Li, Mingyang & Wang, Zequn, 2022. "LSTM-augmented deep networks for time-variant reliability assessment of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Li, Shunlong & Wang, Jie & He, Shaoyang, 2023. "Connectivity probability evaluation of a large-scale highway bridge network using network decomposition," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Thi-Phuong Nguyen, 2021. "Assess the Impacts of Discount Policies on the Reliability of a Stochastic Air Transport Network," Mathematics, MDPI, vol. 9(9), pages 1-13, April.
    5. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
    6. Shijun Wang & Chun Liu & Kui Liang & Ziyun Cheng & Xue Kong & Shuang Gao, 2022. "Wind Speed Prediction Model Based on Improved VMD and Sudden Change of Wind Speed," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    7. Huang, Cheng-Fu & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2022. "Network reliability evaluation for multi-state computing networks considering demand as the non-integer type," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Yeh, Wei-Chang, 2024. "A new hybrid inequality BAT for comprehensive all-level d-MP identification using minimal paths in Multistate Flow Network reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Li, Yan-Fu & Zhao, Wei & Zhang, Chen & Ye, Jiantao & He, Huiru, 2024. "A study on the prediction of service reliability of wireless telecommunication system via distribution regression," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    10. Chang, Ping-Chen, 2024. "A path-based simulation approach for multistate flow network reliability estimation without using boundary points," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    11. Tang, Yugui & Yang, Kuo & Zheng, Yichu & Ma, Li & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A transfer learning approach incorporating temporal convolution and adversarial training," Renewable Energy, Elsevier, vol. 224(C).
    12. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Peng, Shiliang & Fan, Lin & Zhang, Li & Su, Huai & He, Yuxuan & He, Qian & Wang, Xiao & Yu, Dejun & Zhang, Jinjun, 2024. "Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network," Energy, Elsevier, vol. 301(C).
    14. Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
    15. Yu-Chung Tsao & Thuy-Linh Vu, 2023. "Electricity pricing, capacity, and predictive maintenance considering reliability," Annals of Operations Research, Springer, vol. 322(2), pages 991-1011, March.
    16. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Fernández, Juan & Chiachío, Juan & Barros, José & Chiachío, Manuel & Kulkarni, Chetan S., 2024. "Physics-guided recurrent neural network trained with approximate Bayesian computation: A case study on structural response prognostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Ding, Jiaqi & Zhao, Pu & Liu, Changjun & Wang, Xiaofang & Xie, Rong & Liu, Haitao, 2024. "From irregular to continuous: The deep Koopman model for time series forecasting of energy equipment," Applied Energy, Elsevier, vol. 364(C).
    19. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s095183202400437x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.