IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v28y2017i1d10.1007_s10845-014-0971-y.html
   My bibliography  Save this article

Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals

Author

Listed:
  • Zhifen Zhang

    (Shanghai Jiao Tong University)

  • Shanben Chen

    (Shanghai Jiao Tong University)

Abstract

Sensor technology application is the key for intelligent welding process. Multiple sensors fusion has shown their significant advantages over single sensor which can only provide limited information. In this paper, a feature-level data fusion methodology was presented to automatically evaluate seam quality in real time for Al alloy in gas tungsten arc welding by means of online arc sound, voltage and spectrum signals. Based on the developed algorithms in time and frequency domain, multiple feature parameters were successively extracted and selected from sound and voltage signals, while spectrum distribution of argon atoms related to seam penetration were carefully analyzed before feature parameters selection. After the synchronization of heterogeneous feature parameters, the feature-level-based data fusion was conducted by establishing a classifier using support vector machine and 10-fold cross validation. The test results indicate that multisensory-based classifier has higher accuracy i.e., 96.5873 %, than single sensor-based one in term of recognizing seam defects, like under penetration and burn through from normal penetration.

Suggested Citation

  • Zhifen Zhang & Shanben Chen, 2017. "Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 207-218, January.
  • Handle: RePEc:spr:joinma:v:28:y:2017:i:1:d:10.1007_s10845-014-0971-y
    DOI: 10.1007/s10845-014-0971-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-014-0971-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-014-0971-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanyou Lv & Jiawen Xiong & Jianqi Shi & Yanhong Huang & Shengchao Qin, 2021. "A deep convolution generative adversarial networks based fuzzing framework for industry control protocols," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 441-457, February.
    2. Runquan Xiao & Yanling Xu & Zhen Hou & Chao Chen & Shanben Chen, 2022. "An automatic calibration algorithm for laser vision sensor in robotic autonomous welding system," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1419-1432, June.
    3. Abdallah Amine Melakhsou & Mireille Batton-Hubert, 2023. "Welding monitoring and defect detection using probability density distribution and functional nonparametric kernel classifier," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1469-1481, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:28:y:2017:i:1:d:10.1007_s10845-014-0971-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.