IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i2d10.1007_s10845-021-01820-0.html
   My bibliography  Save this article

In-situ monitoring laser based directed energy deposition process with deep convolutional neural network

Author

Listed:
  • Jiqian Mi

    (Wuhan University)

  • Yikai Zhang

    (Wuhan University)

  • Hui Li

    (Wuhan University
    Wuhan University)

  • Shengnan Shen

    (Wuhan University
    Wuhan University)

  • Yongqiang Yang

    (South China University of Technology)

  • Changhui Song

    (South China University of Technology)

  • Xin Zhou

    (Air Force Engineering University)

  • Yucong Duan

    (Air Force Engineering University)

  • Junwen Lu

    (Civil Aviation Flight University of China)

  • Haibo Mai

    (Civil Aviation Flight University of China)

Abstract

Laser based directed energy deposition (L-DED) is a promising type of additive manufacturing technology. The non-destructive testing technology for the quality monitoring of L-DED processed parts is becoming more and more demanding in terms of accuracy, real-time, and ease of operation. This paper introduces a new image recognition system based on a deep convolutional neural network, which uses multiple lightweight architectures to reduce detection time. In order to eliminate the interference better, it improves the penalty function, which effectively improves the accuracy. Judging from the detection results of the data set, the accuracy of the model training reaches 94.71%, which achieves a very good image segmentation effect and solves the technical problem of in-situ monitoring of the L-DED process. This system realizes the positioning of the spatters for the first time, and at the same time, the number of spatters and area of molten pool are correlated to the laser scanning speed and the laser power.

Suggested Citation

  • Jiqian Mi & Yikai Zhang & Hui Li & Shengnan Shen & Yongqiang Yang & Changhui Song & Xin Zhou & Yucong Duan & Junwen Lu & Haibo Mai, 2023. "In-situ monitoring laser based directed energy deposition process with deep convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 683-693, February.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01820-0
    DOI: 10.1007/s10845-021-01820-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01820-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01820-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyamalan Manivannan, 2023. "Automatic quality inspection in additive manufacturing using semi-supervised deep learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3091-3108, October.
    2. Jia Liu & Jiafeng Ye & Daniel Silva Izquierdo & Aleksandr Vinel & Nima Shamsaei & Shuai Shao, 2023. "A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3249-3275, December.
    3. Hong Seok Park & Dinh Son Nguyen & Thai Le-Hong & Xuan Tran, 2022. "Machine learning-based optimization of process parameters in selective laser melting for biomedical applications," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1843-1858, August.
    4. Runquan Xiao & Yanling Xu & Zhen Hou & Chao Chen & Shanben Chen, 2022. "An automatic calibration algorithm for laser vision sensor in robotic autonomous welding system," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1419-1432, June.
    5. Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
    6. Angel-Iván García-Moreno, 2022. "A fast method for monitoring molten pool in infrared image streams using gravitational superpixels," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1779-1794, August.
    7. Feiyang Li & Nian Cai & Xueliang Deng & Jiahao Li & Jianfa Lin & Han Wang, 2022. "Serial number inspection for ceramic membranes via an end-to-end photometric-induced convolutional neural network framework," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1373-1392, June.
    8. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    9. Md Doulotuzzaman Xames & Fariha Kabir Torsha & Ferdous Sarwar, 2023. "A systematic literature review on recent trends of machine learning applications in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2529-2555, August.
    10. Zhangyue Shi & Abdullah Al Mamun & Chen Kan & Wenmeng Tian & Chenang Liu, 2023. "An LSTM-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1815-1831, April.
    11. Vivek Mahato & Muhannad Ahmed Obeidi & Dermot Brabazon & Pádraig Cunningham, 2022. "Detecting voids in 3D printing using melt pool time series data," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 845-852, March.
    12. Zhenxing Cheng & Hu Wang & Gui-Rong Liu, 2021. "Deep convolutional neural network aided optimization for cold spray 3D simulation based on molecular dynamics," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1009-1023, April.
    13. Sinan Uguz & Osman Ipek, 2022. "Prediction of the parameters affecting the performance of compact heat exchangers with an innovative design using machine learning techniques," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1393-1417, June.
    14. Hyunseop Park & Hyunwoong Ko & Yung-tsun Tina Lee & Shaw Feng & Paul Witherell & Hyunbo Cho, 2023. "Collaborative knowledge management to identify data analytics opportunities in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 541-564, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01820-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.