IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i4d10.1007_s10845-021-01879-9.html
   My bibliography  Save this article

An LSTM-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing

Author

Listed:
  • Zhangyue Shi

    (Oklahoma State University)

  • Abdullah Al Mamun

    (Mississippi State University)

  • Chen Kan

    (The University of Texas at Arlington)

  • Wenmeng Tian

    (Mississippi State University)

  • Chenang Liu

    (Oklahoma State University)

Abstract

Additive manufacturing (AM) has gained increasing popularity in a large variety of mission-critical fields, such as aerospace, medical, and transportation. The layer-by-layer fabrication scheme of the AM significantly enhances fabrication flexibility, resulting in the expanded vulnerability space of cyber-physical AM systems. This potentially leads to altered AM parts with compromised mechanical properties and functionalities. Furthermore, those internal alterations in the AM builds are very challenging to detect using the traditional geometric dimensioning and tolerancing (GD&T) features. Therefore, how to effectively monitor and accurately detect cyber-physical attacks becomes a critical barrier for the broader adoption of AM technology. To address this issue, this paper proposes a machine learning-driven online side channel monitoring approach for AM process authentication. A data-driven feature extraction approach based on the LSTM-autoencoder is developed to detect the unintended process/product alterations caused by cyber-physical attacks. Both supervised and unsupervised monitoring schemes are implemented based on the extracted features. To validate the effectiveness of the proposed method, real-world case studies were conducted using a fused filament fabrication (FFF) platform equipped with two accelerometers. In the case study, two different types of cyber-physical attacks are implemented to mimic the potential real-world process alterations. Experimental results demonstrate that the proposed method outperforms conventional process monitoring methods, and it can effectively detect part geometry and layer thickness alterations in a real-time manner.

Suggested Citation

  • Zhangyue Shi & Abdullah Al Mamun & Chen Kan & Wenmeng Tian & Chenang Liu, 2023. "An LSTM-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1815-1831, April.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01879-9
    DOI: 10.1007/s10845-021-01879-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01879-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01879-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin Villalobos & Johan Suykens & Arantza Illarramendi, 2021. "A flexible alarm prediction system for smart manufacturing scenarios following a forecaster–analyzer approach," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1323-1344, June.
    2. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    3. Mojtaba Khanzadeh & Sudipta Chowdhury & Mark A. Tschopp & Haley R. Doude & Mohammad Marufuzzaman & Linkan Bian, 2019. "In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes," IISE Transactions, Taylor & Francis Journals, vol. 51(5), pages 437-455, May.
    4. Mingtao Wu & Zhengyi Song & Young B. Moon, 2019. "Detecting cyber-physical attacks in CyberManufacturing systems with machine learning methods," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1111-1123, March.
    5. Shuai Huang & Zhenyu Kong & Wenzhen Huang, 2014. "High-dimensional process monitoring and change point detection using embedding distributions in reproducing kernel Hilbert space," IISE Transactions, Taylor & Francis Journals, vol. 46(10), pages 999-1016, October.
    6. Chenang Liu & Zhenyu (James) Kong & Suresh Babu & Chase Joslin & James Ferguson, 2021. "An integrated manifold learning approach for high-dimensional data feature extractions and its applications to online process monitoring of additive manufacturing," IISE Transactions, Taylor & Francis Journals, vol. 53(11), pages 1215-1230, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Doulotuzzaman Xames & Fariha Kabir Torsha & Ferdous Sarwar, 2023. "A systematic literature review on recent trends of machine learning applications in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2529-2555, August.
    2. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    3. Xiaobao Zhu & Jing Shi & Fengjie Xie & Rouqi Song, 2020. "Pricing strategy and system performance in a cloud-based manufacturing system built on blockchain technology," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1985-2002, December.
    4. Jia Liu & Jiafeng Ye & Daniel Silva Izquierdo & Aleksandr Vinel & Nima Shamsaei & Shuai Shao, 2023. "A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3249-3275, December.
    5. Runquan Xiao & Yanling Xu & Zhen Hou & Chao Chen & Shanben Chen, 2022. "An automatic calibration algorithm for laser vision sensor in robotic autonomous welding system," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1419-1432, June.
    6. Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
    7. Ranabhat, Bikash & Clements, Joseph & Gatlin, Jacob & Hsiao, Kuang-Ting & Yampolskiy, Mark, 2019. "Optimal sabotage attack on composite material parts," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    8. Safari, Mohammad & Parvinnia, Elham & Haddad, Alireza Keshavarz, 2021. "Industrial intrusion detection based on the behavior of rotating machine," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
    9. Saheed, Yakub Kayode & Abdulganiyu, Oluwadamilare Harazeem & Majikumna, Kaloma Usman & Mustapha, Musa & Workneh, Abebaw Degu, 2024. "ResNet50-1D-CNN: A new lightweight resNet50-One-dimensional convolution neural network transfer learning-based approach for improved intrusion detection in cyber-physical systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 45(C).
    10. Yingjie Zhang & Wentao Yan, 2023. "Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2557-2580, August.
    11. Lianjie Shu & Jinyu Fan, 2018. "A distribution‐free control chart for monitoring high‐dimensional processes based on interpoint distances," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(4), pages 317-330, June.
    12. Thai Le-Hong & Pai Chen Lin & Jian-Zhong Chen & Thinh Duc Quy Pham & Xuan Tran, 2023. "Data-driven models for predictions of geometric characteristics of bead fabricated by selective laser melting," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1241-1257, March.
    13. Siyamalan Manivannan, 2023. "Automatic quality inspection in additive manufacturing using semi-supervised deep learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3091-3108, October.
    14. Hong Seok Park & Dinh Son Nguyen & Thai Le-Hong & Xuan Tran, 2022. "Machine learning-based optimization of process parameters in selective laser melting for biomedical applications," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1843-1858, August.
    15. Jiqian Mi & Yikai Zhang & Hui Li & Shengnan Shen & Yongqiang Yang & Changhui Song & Xin Zhou & Yucong Duan & Junwen Lu & Haibo Mai, 2023. "In-situ monitoring laser based directed energy deposition process with deep convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 683-693, February.
    16. Angel-Iván García-Moreno, 2022. "A fast method for monitoring molten pool in infrared image streams using gravitational superpixels," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1779-1794, August.
    17. Feiyang Li & Nian Cai & Xueliang Deng & Jiahao Li & Jianfa Lin & Han Wang, 2022. "Serial number inspection for ceramic membranes via an end-to-end photometric-induced convolutional neural network framework," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1373-1392, June.
    18. Vivek Mahato & Muhannad Ahmed Obeidi & Dermot Brabazon & Pádraig Cunningham, 2022. "Detecting voids in 3D printing using melt pool time series data," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 845-852, March.
    19. Zhenxing Cheng & Hu Wang & Gui-Rong Liu, 2021. "Deep convolutional neural network aided optimization for cold spray 3D simulation based on molecular dynamics," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1009-1023, April.
    20. Zhao Peng & Huan Zhang & Hongtao Tang & Yue Feng & Weiming Yin, 2022. "Research on flexible job-shop scheduling problem in green sustainable manufacturing based on learning effect," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1725-1746, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01879-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.