A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-022-02012-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Salomé Sanchez & Divish Rengasamy & Christopher J. Hyde & Grazziela P. Figueredo & Benjamin Rothwell, 2021. "Machine learning to determine the main factors affecting creep rates in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2353-2373, December.
- A. Costa & G. Buffa & D. Palmeri & G. Pollara & L. Fratini, 2022. "Hybrid prediction-optimization approaches for maximizing parts density in SLM of Ti6Al4V titanium alloy," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1967-1989, October.
- Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
- Ghobadian, Abby & Talavera, Irene & Bhattacharya, Arijit & Kumar, Vikas & Garza-Reyes, Jose Arturo & O'Regan, Nicholas, 2020. "Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability," International Journal of Production Economics, Elsevier, vol. 219(C), pages 457-468.
- William Mycroft & Mordechai Katzman & Samuel Tammas-Williams & Everth Hernandez-Nava & George Panoutsos & Iain Todd & Visakan Kadirkamanathan, 2020. "A data-driven approach for predicting printability in metal additive manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1769-1781, October.
- Jia (Peter) Liu & Chenang Liu & Yun Bai & Prahalada Rao & Christopher B. Williams & Zhenyu (James) Kong, 2019. "Layer-wise spatial modeling of porosity in additive manufacturing," IISE Transactions, Taylor & Francis Journals, vol. 51(2), pages 109-123, February.
- Hong Seok Park & Dinh Son Nguyen & Thai Le-Hong & Xuan Tran, 2022. "Machine learning-based optimization of process parameters in selective laser melting for biomedical applications," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1843-1858, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
- Hyunseop Park & Hyunwoong Ko & Yung-tsun Tina Lee & Shaw Feng & Paul Witherell & Hyunbo Cho, 2023. "Collaborative knowledge management to identify data analytics opportunities in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 541-564, February.
- Md Doulotuzzaman Xames & Fariha Kabir Torsha & Ferdous Sarwar, 2023. "A systematic literature review on recent trends of machine learning applications in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2529-2555, August.
- Julian Schwierzy & Robert Dehghan & Sebastian Schmidt & Elisa Rodepeter & Andreas Stoemmer & Kaan Uctum & Jan Kinne & David Lenz & Hanna Hottenrott, 2022. "Technology Mapping Using WebAI: The Case of 3D Printing," Papers 2201.01125, arXiv.org.
- Runquan Xiao & Yanling Xu & Zhen Hou & Chao Chen & Shanben Chen, 2022. "An automatic calibration algorithm for laser vision sensor in robotic autonomous welding system," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1419-1432, June.
- Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
- Jiyoung Jung & Kundo Park & Byungjin Cho & Jinkyoo Park & Seunghwa Ryu, 2023. "Optimization of injection molding process using multi-objective bayesian optimization and constrained generative inverse design networks," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3623-3636, December.
- Zhen Zhang & Zenan Yang & Chenchong Wang & Wei Xu, 2024. "Accelerating ultrashort pulse laser micromachining process comprehensive optimization using a machine learning cycle design strategy integrated with a physical model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 449-465, January.
- Naghshineh, Bardia & Carvalho, Helena, 2022. "The implications of additive manufacturing technology adoption for supply chain resilience: A systematic search and review," International Journal of Production Economics, Elsevier, vol. 247(C).
- Elia, Stefano & Giuffrida, Maria & Mariani, Marcello M. & Bresciani, Stefano, 2021. "Resources and digital export: An RBV perspective on the role of digital technologies and capabilities in cross-border e-commerce," Journal of Business Research, Elsevier, vol. 132(C), pages 158-169.
- Antonio Sartal & Josep Llach & Fernando León-Mateos, 2022. "“Do technologies really affect that much? exploring the potential of several industry 4.0 technologies in today’s lean manufacturing shop floors”," Operational Research, Springer, vol. 22(5), pages 6075-6106, November.
- Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023.
"Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams,"
Technological Forecasting and Social Change, Elsevier, vol. 193(C).
- Josip Marić & M. Opazo-Basáez & B. Vlačić & M. Dabić, 2023. "Innovation Management of Three-Dimensional Printing (3DP) Technology: Disclosing Insights from Existing Literature and Determining Future Research Streams," Post-Print hal-04435561, HAL.
- Hettiarachchi, Biman Darshana & Brandenburg, Marcus & Seuring, Stefan, 2022. "Connecting additive manufacturing to circular economy implementation strategies: Links, contingencies and causal loops," International Journal of Production Economics, Elsevier, vol. 246(C).
- Bonnín Roca, Jaime & Vaishnav, Parth & Morgan, Granger M. & Fuchs, Erica & Mendonça, Joana, 2021. "Technology Forgiveness: Why emerging technologies differ in their resilience to institutional instability," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Zhangyue Shi & Abdullah Al Mamun & Chen Kan & Wenmeng Tian & Chenang Liu, 2023. "An LSTM-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1815-1831, April.
- Huaxian Wei & Bijan Shirinzadeh & Xiaodong Niu & Jian Zhang & Wei Li & Alessandro Simeone, 2021. "Study of the hinge thickness deviation for a 316L parallelogram flexure mechanism fabricated via selective laser melting," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1411-1420, June.
- Gabrielli do Livramento Gonçalves & Walter Leal Filho & Samara da Silva Neiva & André Borchardt Deggau & Manoela de Oliveira Veras & Flávio Ceci & Maurício Andrade de Lima & José Baltazar Salgueirinho, 2021. "The Impacts of the Fourth Industrial Revolution on Smart and Sustainable Cities," Sustainability, MDPI, vol. 13(13), pages 1-21, June.
- Chenglin Li & Baohai Wu & Zhao Zhang & Ying Zhang, 2023. "A novel process planning method of 3 + 2-axis additive manufacturing for aero-engine blade based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2027-2042, April.
- Lai, Kee-hung & Feng, Yunting & Zhu, Qinghua, 2023. "Digital transformation for green supply chain innovation in manufacturing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
- Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
More about this item
Keywords
Machine learning; Laser beam powder bed fusion; Process and performance optimization; Process-structure–property relationships; Prediction accuracy; Interpretability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:8:d:10.1007_s10845-022-02012-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.