IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v29y2012i2p227-258.html
   My bibliography  Save this article

Accurate Tree-based Missing Data Imputation and Data Fusion within the Statistical Learning Paradigm

Author

Listed:
  • Antonio D’Ambrosio
  • Massimo Aria
  • Roberta Siciliano

Abstract

No abstract is available for this item.

Suggested Citation

  • Antonio D’Ambrosio & Massimo Aria & Roberta Siciliano, 2012. "Accurate Tree-based Missing Data Imputation and Data Fusion within the Statistical Learning Paradigm," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 227-258, July.
  • Handle: RePEc:spr:jclass:v:29:y:2012:i:2:p:227-258
    DOI: 10.1007/s00357-012-9108-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-012-9108-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-012-9108-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saporta, Gilbert, 2002. "Data fusion and data grafting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 465-473, February.
    2. Cappelli, Carmela & Mola, Francesco & Siciliano, Roberta, 2002. "A statistical approach to growing a reliable honest tree," Computational Statistics & Data Analysis, Elsevier, vol. 38(3), pages 285-299, January.
    3. Claudio Conversano & Roberta Siciliano, 2009. "Incremental Tree-Based Missing Data Imputation with Lexicographic Ordering," Journal of Classification, Springer;The Classification Society, vol. 26(3), pages 361-379, December.
    4. Conti, Pier Luigi & Marella, Daniela & Scanu, Mauro, 2008. "Evaluation of matching noise for imputation techniques based on nonparametric local linear regression estimators," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 354-365, December.
    5. Gey, Servane & Poggi, Jean-Michel, 2006. "Boosting and instability for regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 533-550, January.
    6. J. G. Ibrahim & S. R. Lipsitz & M.‐H. Chen, 1999. "Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 173-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Miguel Pires & Faisal Hussain & Nuno M. Garcia & Eftim Zdravevski, 2020. "Improving Human Activity Monitoring by Imputation of Missing Sensory Data: Experimental Study," Future Internet, MDPI, vol. 12(9), pages 1-18, September.
    2. Roberta Siciliano & Antonio D’Ambrosio & Massimo Aria & Sonia Amodio, 2017. "Analysis of Web Visit Histories, Part II: Predicting Navigation by Nested STUMP Regression Trees," Journal of Classification, Springer;The Classification Society, vol. 34(3), pages 473-493, October.
    3. Amodio, S. & D’Ambrosio, A. & Siciliano, R., 2016. "Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach," European Journal of Operational Research, Elsevier, vol. 249(2), pages 667-676.
    4. Massimo Aria & Antonio D’Ambrosio & Carmela Iorio & Roberta Siciliano & Valentina Cozza, 2020. "Dynamic recursive tree-based partitioning for malignant melanoma identification in skin lesion dermoscopic images," Statistical Papers, Springer, vol. 61(4), pages 1645-1661, August.
    5. Lukasz Struski & Marek Śmieja & Jacek Tabor, 2020. "Pointed Subspace Approach to Incomplete Data," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 42-57, April.
    6. Zahra Rezaei Ghahroodi, 2023. "Statistical matching of sample survey data: application to integrate Iranian time use and labour force surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 1023-1051, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    2. Gerda Claeskens & Fabrizio Consentino, 2008. "Variable Selection with Incomplete Covariate Data," Biometrics, The International Biometric Society, vol. 64(4), pages 1062-1069, December.
    3. Ramon I. Garcia & Joseph G. Ibrahim & Hongtu Zhu, 2010. "Variable Selection in the Cox Regression Model with Covariates Missing at Random," Biometrics, The International Biometric Society, vol. 66(1), pages 97-104, March.
    4. Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
    5. Amy H. Herring & Joseph G. Ibrahim & Stuart R. Lipsitz, 2002. "Frailty Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 58(1), pages 98-109, March.
    6. Nicklas Pettersson, 2013. "Bias reduction of finite population imputation by kernel methods," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 139-160, March.
    7. Hongbin Zhang & Lang Wu, 2018. "A non‐linear model for censored and mismeasured time varying covariates in survival models, with applications in human immunodeficiency virus and acquired immune deficiency syndrome studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1437-1450, November.
    8. Liu, Li & Xiang, Liming, 2019. "Missing covariate data in generalized linear mixed models with distribution-free random effects," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 1-16.
    9. Kano, Yutaka & Takai, Keiji, 2011. "Analysis of NMAR missing data without specifying missing-data mechanisms in a linear latent variate model," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1241-1255, October.
    10. Qingxia Chen & Fan Zhang & Ming-Hui Chen & Xiuyu Julie Cong, 2020. "Estimation of treatment effects and model diagnostics with two-way time-varying treatment switching: an application to a head and neck study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 685-707, October.
    11. Samiran Sinha & Krishna K. Saha & Suojin Wang, 2014. "Semiparametric approach for non-monotone missing covariates in a parametric regression model," Biometrics, The International Biometric Society, vol. 70(2), pages 299-311, June.
    12. Amy L. Stubbendick & Joseph G. Ibrahim, 2003. "Maximum Likelihood Methods for Nonignorable Missing Responses and Covariates in Random Effects Models," Biometrics, The International Biometric Society, vol. 59(4), pages 1140-1150, December.
    13. Jiwei Zhao & Jun Shao, 2015. "Semiparametric Pseudo-Likelihoods in Generalized Linear Models With Nonignorable Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1577-1590, December.
    14. Dlugosz, Stephan, 2011. "Give missings a chance: Combined stochastic and rule-based approach to improve regression models with mismeasured monotonic covariates without side information," ZEW Discussion Papers 11-013, ZEW - Leibniz Centre for European Economic Research.
    15. Rässler Susanne, 2000. "Ergänzung fehlender Daten in Umfragen / Imputation of Missing Data in Surveys," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 220(1), pages 64-94, February.
    16. Qingxia Chen & Joseph G. Ibrahim, 2006. "Semiparametric Models for Missing Covariate and Response Data in Regression Models," Biometrics, The International Biometric Society, vol. 62(1), pages 177-184, March.
    17. Lee, Min Cherng & Mitra, Robin, 2016. "Multiply imputing missing values in data sets with mixed measurement scales using a sequence of generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 24-38.
    18. Eleanor McDonnell Feit & Mark A. Beltramo & Fred M. Feinberg, 2010. "Reality Check: Combining Choice Experiments with Market Data to Estimate the Importance of Product Attributes," Management Science, INFORMS, vol. 56(5), pages 785-800, May.
    19. George Petrakos & Claudio Conversano & Gregory Farmakis & Francesco Mola & Roberta Siciliano & Photis Stavropoulos, 2004. "New ways of specifying data edits," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(2), pages 249-274, May.
    20. D'Alberto, R. & Raggi, M., 2018. "Statistical Matching in agricultural economics: how to integrate different farm data sources," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277101, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:29:y:2012:i:2:p:227-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.