IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v67y2018i5p1437-1450.html
   My bibliography  Save this article

A non‐linear model for censored and mismeasured time varying covariates in survival models, with applications in human immunodeficiency virus and acquired immune deficiency syndrome studies

Author

Listed:
  • Hongbin Zhang
  • Lang Wu

Abstract

In survival regression analysis, when the time‐dependent covariates are censored and measured with errors, a joint model is often considered for the longitudinal covariate data and the survival data. Typically, an empirical linear (mixed) model is assumed for the time‐dependent covariates. However, such an empirical linear covariate model may be inappropriate for the (unobserved) censored covariate values that may behave quite differently from the observed covariate process. In applications such as human immunodeficiency virus–acquired immune deficiency syndrome studies, a mechanistic non‐linear model can be derived for the covariate process on the basis of the underlying data generation mechanisms and such a non‐linear covariate model may provide better ‘predictions’ for the censored and mismeasured covariate values. We propose a joint Cox and non‐linear mixed effect model to model survival data with censored and mismeasured time varying covariates. We use likelihood methods for inference, implemented by the Monte Carlo EM algorithm. The models and methods are evaluated by simulations. An acquired immune deficiency syndrome data set is analysed in detail, where the time‐dependent covariate is a viral load which may be censored because of a lower detection limit and may also be measured with errors. The results based on linear and non‐linear covariate models are compared and new insights are gained.

Suggested Citation

  • Hongbin Zhang & Lang Wu, 2018. "A non‐linear model for censored and mismeasured time varying covariates in survival models, with applications in human immunodeficiency virus and acquired immune deficiency syndrome studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1437-1450, November.
  • Handle: RePEc:bla:jorssc:v:67:y:2018:i:5:p:1437-1450
    DOI: 10.1111/rssc.12279
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12279
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen Ye & Xihong Lin & Jeremy M. G. Taylor, 2008. "Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data–A Two-Stage Regression Calibration Approach," Biometrics, The International Biometric Society, vol. 64(4), pages 1238-1246, December.
    2. Bernhardt, Paul W. & Wang, Huixia Judy & Zhang, Daowen, 2014. "Flexible modeling of survival data with covariates subject to detection limits via multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 81-91.
    3. James P. Hughes, 1999. "Mixed Effects Models with Censored Data with Application to HIV RNA Levels," Biometrics, The International Biometric Society, vol. 55(2), pages 625-629, June.
    4. Yi-Kuan Tseng & Fushing Hsieh & Jane-Ling Wang, 2005. "Joint modelling of accelerated failure time and longitudinal data," Biometrika, Biometrika Trust, vol. 92(3), pages 587-603, September.
    5. J. G. Ibrahim & S. R. Lipsitz & M.‐H. Chen, 1999. "Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 173-190.
    6. L. Wu & W. Liu & X. J. Hu, 2010. "Joint Inference on HIV Viral Dynamics and Immune Suppression in Presence of Measurement Errors," Biometrics, The International Biometric Society, vol. 66(2), pages 327-335, June.
    7. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    8. Yangxin Huang & X. Hu & Getachew Dagne, 2014. "Jointly modeling time-to-event and longitudinal data: a Bayesian approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 95-121, March.
    9. Hulin Wu & A. Adam Ding, 1999. "Population HIV-1 Dynamics In Vivo: Applicable Models and Inferential Tools for Virological Data from AIDS Clinical Trials," Biometrics, The International Biometric Society, vol. 55(2), pages 410-418, June.
    10. Wu L., 2002. "A Joint Model for Nonlinear Mixed-Effects Models With Censoring and Covariates Measured With Error, With Application to AIDS Studies," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 955-964, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalyan Das & Angshuman Sarkar, 2014. "Robust inference for generalized partially linear mixed models that account for censored responses and missing covariates -- an application to Arctic data analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2418-2436, November.
    2. Vaida, Florin & Fitzgerald, Anthony P. & DeGruttola, Victor, 2007. "Efficient hybrid EM for linear and nonlinear mixed effects models with censored response," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5718-5730, August.
    3. Dagne Getachew & Huang Yangxin, 2012. "Bayesian inference for a nonlinear mixed-effects Tobit model with multivariate skew-t distributions: application to AIDS studies," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-24, September.
    4. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    5. Hongbin Zhang & Lang Wu, 2019. "An approximate method for generalized linear and nonlinear mixed effects models with a mechanistic nonlinear covariate measurement error model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 471-499, May.
    6. Larissa A. Matos & Luis M. Castro & Víctor H. Lachos, 2016. "Censored mixed-effects models for irregularly observed repeated measures with applications to HIV viral loads," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 627-653, December.
    7. L. Wu & W. Liu & X. J. Hu, 2010. "Joint Inference on HIV Viral Dynamics and Immune Suppression in Presence of Measurement Errors," Biometrics, The International Biometric Society, vol. 66(2), pages 327-335, June.
    8. Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
    9. Getachew A. Dagne, 2016. "A growth mixture Tobit model: application to AIDS studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1174-1185, July.
    10. Wei Liu & Shuyou Li, 2015. "A multiple imputation approach to nonlinear mixed-effects models with covariate measurement errors and missing values," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 463-476, March.
    11. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    12. Matos, Larissa A. & Bandyopadhyay, Dipankar & Castro, Luis M. & Lachos, Victor H., 2015. "Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 104-117.
    13. Rui Martins, 2022. "A flexible link for joint modelling longitudinal and survival data accounting for individual longitudinal heterogeneity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 41-61, March.
    14. Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
    15. Samson, Adeline & Lavielle, Marc & Mentre, France, 2006. "Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1562-1574, December.
    16. Lisa M. McCrink & Adele H. Marshall & Karen J. Cairns, 2013. "Advances in Joint Modelling: A Review of Recent Developments with Application to the Survival of End Stage Renal Disease Patients," International Statistical Review, International Statistical Institute, vol. 81(2), pages 249-269, August.
    17. Jianwei Chen, 2010. "Modelling long‐term human immunodeficiency virus dynamic models with application to acquired immune deficiency syndrome clinical study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 805-820, November.
    18. Lee, Min Cherng & Mitra, Robin, 2016. "Multiply imputing missing values in data sets with mixed measurement scales using a sequence of generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 24-38.
    19. Yangxin Huang & Getachew Dagne, 2011. "A Bayesian Approach to Joint Mixed-Effects Models with a Skew-Normal Distribution and Measurement Errors in Covariates," Biometrics, The International Biometric Society, vol. 67(1), pages 260-269, March.
    20. Chen, Ming-Hui & Ibrahim, Joseph G. & Shao, Qi-Man, 2009. "Maximum likelihood inference for the Cox regression model with applications to missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2018-2030, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:67:y:2018:i:5:p:1437-1450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.