IDEAS home Printed from https://ideas.repec.org/a/csb/stintr/v14y2013i1p139-160.html
   My bibliography  Save this article

Bias reduction of finite population imputation by kernel methods

Author

Listed:
  • Nicklas Pettersson

Abstract

Missing data is a nuisance in statistics. Real donor imputation can be used with item nonresponse. A pool of donor units with similar values on auxiliary variables is matched to each unit with missing values. The missing value is then replaced by a copy of the corresponding observed value from a randomly drawn donor. Such methods can to some extent protect against nonresponse bias. But bias also depends on the estimator and the nature of the data. We adopt techniques from kernel estimation to combat this bias. Motivated by Pólya urn sampling, we sequentially update the set of potential donors with units already imputed, and use multiple imputations via Bayesian bootstrap to account for imputation uncertainty. Simulations with a single auxiliary variable show that our imputation method performs almost as well as competing methods with linear data, but better when data is nonlinear, especially with large samples.

Suggested Citation

  • Nicklas Pettersson, 2013. "Bias reduction of finite population imputation by kernel methods," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 139-160, March.
  • Handle: RePEc:csb:stintr:v:14:y:2013:i:1:p:139-160
    as

    Download full text from publisher

    File URL: http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v14_2013_i1_n10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Conti, Pier Luigi & Marella, Daniela & Scanu, Mauro, 2008. "Evaluation of matching noise for imputation techniques based on nonparametric local linear regression estimators," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 354-365, December.
    3. Honaker, James & King, Gary & Blackwell, Matthew, 2011. "Amelia II: A Program for Missing Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i07).
    4. Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
    5. Marc Aerts, 2002. "Local multiple imputation," Biometrika, Biometrika Trust, vol. 89(2), pages 375-388, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Xiaoyue & Cook, Dianne & Hofmann, Heike, 2015. "Visually Exploring Missing Values in Multivariable Data Using a Graphical User Interface," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i06).
    2. Lara Lopez & Fernando L. Vázquez & Ángela J. Torres & Patricia Otero & Vanessa Blanco & Olga Díaz & Mario Páramo, 2020. "Long-Term Effects of a Cognitive Behavioral Conference Call Intervention on Depression in Non-Professional Caregivers," IJERPH, MDPI, vol. 17(22), pages 1-24, November.
    3. Ahfock, Daniel & Pyne, Saumyadipta & McLachlan, Geoffrey J., 2022. "Statistical file-matching of non-Gaussian data: A game theoretic approach," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    4. Yijie Xue & Nicole Lazar, 2012. "Empirical likelihood-based hot deck imputation methods," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 629-646.
    5. Schoemaker, Nikita K. & Juffer, Femmie & Rippe, Ralph C.A. & Vermeer, Harriet J. & Stoltenborgh, Marije & Jagersma, Gabrine J. & Maras, Athanasios & Alink, Lenneke R.A., 2020. "Positive parenting in foster care: Testing the effectiveness of a video-feedback intervention program on foster parents’ behavior and attitudes," Children and Youth Services Review, Elsevier, vol. 110(C).
    6. Nicholas Tierney & Dianne Cook, 2018. "Expanding tidy data principles to facilitate missing data exploration, visualization and assessment of imputations," Monash Econometrics and Business Statistics Working Papers 14/18, Monash University, Department of Econometrics and Business Statistics.
    7. Thelma Dede Baddoo & Zhijia Li & Samuel Nii Odai & Kenneth Rodolphe Chabi Boni & Isaac Kwesi Nooni & Samuel Ato Andam-Akorful, 2021. "Comparison of Missing Data Infilling Mechanisms for Recovering a Real-World Single Station Streamflow Observation," IJERPH, MDPI, vol. 18(16), pages 1-26, August.
    8. Jeongsub Choi & Youngdoo Son & Myong K. Jeong, 2024. "Gaussian kernel with correlated variables for incomplete data," Annals of Operations Research, Springer, vol. 341(1), pages 223-244, October.
    9. Ralf Münnich & Siegfried Gabler & Christian Bruch & Jan Pablo Burgard & Tobias Enderle & Jan-Philipp Kolb & Thomas Zimmermann, 2015. "Tabellenauswertungen im Zensus unter Berücksichtigung fehlender Werte," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(3), pages 269-304, December.
    10. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    11. Jana Emmenegger & Ralf Münnich & Jannik Schaller, 2022. "Evaluating Data Fusion Methods to Improve Income Modelling," Research Papers in Economics 2022-03, University of Trier, Department of Economics.
    12. Josse, Julie & Husson, François, 2016. "missMDA: A Package for Handling Missing Values in Multivariate Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i01).
    13. Kowarik, Alexander & Templ, Matthias, 2016. "Imputation with the R Package VIM," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i07).
    14. Endres Eva & Fink Paul & Augustin Thomas, 2019. "Imprecise Imputation: A Nonparametric Micro Approach Reflecting the Natural Uncertainty of Statistical Matching with Categorical Data," Journal of Official Statistics, Sciendo, vol. 35(3), pages 599-624, September.
    15. World Bank & Organisation for Economic Co-operation and Development, 2017. "A Step Ahead," World Bank Publications - Books, The World Bank Group, number 27527.
    16. Gessendorfer Jonathan & Beste Jonas & Drechsler Jörg & Sakshaug Joseph W., 2018. "Statistical Matching as a Supplement to Record Linkage: A Valuable Method to Tackle Nonconsent Bias?," Journal of Official Statistics, Sciendo, vol. 34(4), pages 909-933, December.
    17. Adel Bosch & Steven F. Koch, 2021. "Individual and Household Debt: Does Imputation Choice Matter?," Working Papers 202141, University of Pretoria, Department of Economics.
    18. Junyung Ji & Jiwoo Kim & Younghoon Kim, 2024. "Predicting Missing Values in Survey Data Using Prompt Engineering for Addressing Item Non-Response," Future Internet, MDPI, vol. 16(10), pages 1-19, September.
    19. Riccardo D’Alberto & Matteo Zavalloni & Meri Raggi & Davide Viaggi, 2018. "AES Impact Evaluation With Integrated Farm Data: Combining Statistical Matching and Propensity Score Matching," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    20. Maria Lucia Parrella & Giuseppina Albano & Michele La Rocca & Cira Perna, 2019. "Reconstructing missing data sequences in multivariate time series: an application to environmental data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 359-383, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:csb:stintr:v:14:y:2013:i:1:p:139-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beata Witek (email available below). General contact details of provider: https://edirc.repec.org/data/gusgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.