IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v32y2023i3d10.1007_s10260-023-00693-2.html
   My bibliography  Save this article

Statistical matching of sample survey data: application to integrate Iranian time use and labour force surveys

Author

Listed:
  • Zahra Rezaei Ghahroodi

    (University of Tehran)

Abstract

Survey data are still contemplated as one of the main sources in official statistics. However, due to the high cost of conducting a survey, as well as the respondent burden, it may not be possible to collect all variables of interest in a data set. To obtain a more comprehensive source of data, one possible way is to integrate available data from different data sets such as already existing data, administrative registers, and official surveys. This helps to minimize the shortcomings of each survey and to maximize their advantages. In this paper, a mixed method at the micro-level has been applied to integrate data sourced from two surveys, involving the ‘Iranian Labour Force Survey’ and the ‘Iranian Time Use Survey’ which have been performed in the Fall of 2015. Thereby, besides increasing the coverage of the variables from two sources, we could also study the peculiarities of work and life qualities. For this objective, we develop a statistical matching micro approach by proposing the conditional predictive Dirichlet distribution and conditional predictive multinomial distribution in the regression step of mixed methods. In the end, the quality of matching along with the similarity of marginal distributions of specific variables (variables of interest) pre-and-post the integration are assessed by some similarity measures and the Kolmogorov–Smirnov test.

Suggested Citation

  • Zahra Rezaei Ghahroodi, 2023. "Statistical matching of sample survey data: application to integrate Iranian time use and labour force surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 1023-1051, September.
  • Handle: RePEc:spr:stmapp:v:32:y:2023:i:3:d:10.1007_s10260-023-00693-2
    DOI: 10.1007/s10260-023-00693-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-023-00693-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-023-00693-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio D’Ambrosio & Massimo Aria & Roberta Siciliano, 2012. "Accurate Tree-based Missing Data Imputation and Data Fusion within the Statistical Learning Paradigm," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 227-258, July.
    2. Nancy Ruggles & Richard Ruggles, 1974. "A Strategy for Merging and Matching Microdata Sets," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 2, pages 353-371, National Bureau of Economic Research, Inc.
    3. Z. Rezaei Ghahroodi & M. Ganjali, 2013. "A Bayesian approach for analysing longitudinal nominal outcomes using random coefficients transitional generalized logit model: an application to the labour force survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1425-1445, July.
    4. Z. Rezaei Ghahroodi & M. Ganjali & F. Harandi & D. Berridge, 2011. "Bivariate transition model for analysing ordinal and nominal categorical responses: an application to the Labour Force Survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(4), pages 817-832, February.
    5. Pier Luigi Conti & Daniela Marella & Mauro Scanu, 2016. "Statistical Matching Analysis for Complex Survey Data With Applications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1715-1725, October.
    6. Pierre Walthery & Jonathan Gershuny, 2019. "Improving Stylised Working Time Estimates with Time Diary Data: A Multi Study Assessment for the UK," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1303-1321, August.
    7. Marella, Daniela & Scanu, Mauro & Luigi Conti, Pier, 2008. "On the matching noise of some nonparametric imputation procedures," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1593-1600, September.
    8. Rubin, Donald B, 1986. "Statistical Matching Using File Concatenation with Adjusted Weights and Multiple Imputations," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 87-94, January.
    9. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    10. Tao Wang & Hongyu Zhao, 2017. "A Dirichlet-tree multinomial regression model for associating dietary nutrients with gut microorganisms," Biometrics, The International Biometric Society, vol. 73(3), pages 792-801, September.
    11. Conti, Pier Luigi & Marella, Daniela & Scanu, Mauro, 2008. "Evaluation of matching noise for imputation techniques based on nonparametric local linear regression estimators," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 354-365, December.
    12. Fernando Rios-Avila, 2018. "Quality of Match for Statistical Matches Using the American Time Use Survey 2013, the Survey of Consumer Finances 2013, and the Annual Social and Economic Supplement 2014," Economics Working Paper Archive wp_914, Levy Economics Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahfock, Daniel & Pyne, Saumyadipta & McLachlan, Geoffrey J., 2022. "Statistical file-matching of non-Gaussian data: A game theoretic approach," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. Claramunt González, Juan & van Delden, Arnout & de Waal, Ton, 2023. "Assessment of the effect of constraints in a new multivariate mixed method for statistical matching," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    3. Chiara Elena Dalla & Menon Martina & Perali Federico, 2019. "An Integrated Database to Measure Living Standards," Journal of Official Statistics, Sciendo, vol. 35(3), pages 531-576, September.
    4. Francesco D. d’Ovidio & Paola Perchinunno & Laura Antonucci, 2021. "Data Integration Techniques for the Identification of Poverty Profiles," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 515-531, August.
    5. Andrea Cutillo & Mauro Scanu, 2020. "A Mixed Approach for Data Fusion of HBS and SILC," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 150(2), pages 411-437, July.
    6. Peter ven de Ven & Anne Harrison & Barbara Fraumeni & Dennis Fixler & David Johnson & Andrew Craig & Kevin Furlong, 2017. "A Consistent Data Series to Evaluate Growth and Inequality in the National Accounts Note: The views expressed in this research, including those related to statistical, methodological, technical, or op," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63, pages 437-459, December.
    7. Clinton P. McCully, 2013. "Integration of Micro and Macro Data on Consumer Income and Expenditures," BEA Working Papers 0101, Bureau of Economic Analysis.
    8. Gessendorfer Jonathan & Beste Jonas & Drechsler Jörg & Sakshaug Joseph W., 2018. "Statistical Matching as a Supplement to Record Linkage: A Valuable Method to Tackle Nonconsent Bias?," Journal of Official Statistics, Sciendo, vol. 34(4), pages 909-933, December.
    9. Daniela Marella & Danny Pfeffermann, 2023. "Accounting for Non‐ignorable Sampling and Non‐response in Statistical Matching," International Statistical Review, International Statistical Institute, vol. 91(2), pages 269-293, August.
    10. Riccardo D’Alberto & Matteo Zavalloni & Meri Raggi & Davide Viaggi, 2018. "AES Impact Evaluation With Integrated Farm Data: Combining Statistical Matching and Propensity Score Matching," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    11. Perchinunno, Paola & Mongelli, Lucia & d’Ovidio, Francesco D., 2020. "Statistical matching techniques in order to plan interventions on socioeconomic weakness: An Italian case," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    12. Ivan Miguel Pires & Faisal Hussain & Nuno M. Garcia & Eftim Zdravevski, 2020. "Improving Human Activity Monitoring by Imputation of Missing Sensory Data: Experimental Study," Future Internet, MDPI, vol. 12(9), pages 1-18, September.
    13. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    14. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    15. Yayan Hernuryadin & Koji Kotani & Tatsuyoshi Saijo, 2020. "Time Preferences of Food Producers: Does “Cultivate and Grow” Matter?," Land Economics, University of Wisconsin Press, vol. 96(1), pages 132-148.
    16. Mhamed Ben Salah & Cédric Chambru & Maleke Fourati, 2022. "The colonial legacy of education: evidence from of Tunisia," ECON - Working Papers 411, Department of Economics - University of Zurich, revised Sep 2024.
    17. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    18. Ameztegui, Aitor & Coll, Lluís & Messier, Christian, 2015. "Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones," Ecological Modelling, Elsevier, vol. 313(C), pages 84-93.
    19. Sokolova, Maria V., 2016. "Exchange Rates, International Trade and Growth: Re-Evaluation of Undervaluation," Conference papers 332790, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:32:y:2023:i:3:d:10.1007_s10260-023-00693-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.