IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v12y2020i9p155-d414888.html
   My bibliography  Save this article

Improving Human Activity Monitoring by Imputation of Missing Sensory Data: Experimental Study

Author

Listed:
  • Ivan Miguel Pires

    (Instituto de Telecomunicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
    Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal)

  • Faisal Hussain

    (Department of Computer Engineering, University of Engineering and Technology (UET), Taxila 47080, Pakistan)

  • Nuno M. Garcia

    (Instituto de Telecomunicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal)

  • Eftim Zdravevski

    (Faculty of Computer Science and Engineering, University Ss Cyril and Methodius, 1000 Skopje, North Macedonia)

Abstract

The automatic recognition of human activities with sensors available in off-the-shelf mobile devices has been the subject of different research studies in recent years. It may be useful for the monitoring of elderly people to present warning situations, monitoring the activity of sports people, and other possibilities. However, the acquisition of the data from different sensors may fail for different reasons, and the human activities are recognized with better accuracy if the different datasets are fulfilled. This paper focused on two stages of a system for the recognition of human activities: data imputation and data classification. Regarding the data imputation, a methodology for extrapolating the missing samples of a dataset to better recognize the human activities was proposed. The K-Nearest Neighbors (KNN) imputation technique was used to extrapolate the missing samples in dataset captures. Regarding the data classification, the accuracy of the previously implemented method, i.e., Deep Neural Networks (DNN) with normalized and non-normalized data, was improved in relation to the previous results without data imputation.

Suggested Citation

  • Ivan Miguel Pires & Faisal Hussain & Nuno M. Garcia & Eftim Zdravevski, 2020. "Improving Human Activity Monitoring by Imputation of Missing Sensory Data: Experimental Study," Future Internet, MDPI, vol. 12(9), pages 1-18, September.
  • Handle: RePEc:gam:jftint:v:12:y:2020:i:9:p:155-:d:414888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/12/9/155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/12/9/155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio D’Ambrosio & Massimo Aria & Roberta Siciliano, 2012. "Accurate Tree-based Missing Data Imputation and Data Fusion within the Statistical Learning Paradigm," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 227-258, July.
    2. Eftim Zdravevski & Biljana Risteska Stojkoska & Marie Standl & Holger Schulz, 2017. "Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-28, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Miguel Pires & Faisal Hussain & Nuno M. Garcia & Petre Lameski & Eftim Zdravevski, 2020. "Homogeneous Data Normalization and Deep Learning: A Case Study in Human Activity Classification," Future Internet, MDPI, vol. 12(11), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberta Siciliano & Antonio D’Ambrosio & Massimo Aria & Sonia Amodio, 2017. "Analysis of Web Visit Histories, Part II: Predicting Navigation by Nested STUMP Regression Trees," Journal of Classification, Springer;The Classification Society, vol. 34(3), pages 473-493, October.
    2. Massimo Aria & Antonio D’Ambrosio & Carmela Iorio & Roberta Siciliano & Valentina Cozza, 2020. "Dynamic recursive tree-based partitioning for malignant melanoma identification in skin lesion dermoscopic images," Statistical Papers, Springer, vol. 61(4), pages 1645-1661, August.
    3. Lukasz Struski & Marek Śmieja & Jacek Tabor, 2020. "Pointed Subspace Approach to Incomplete Data," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 42-57, April.
    4. Zahra Rezaei Ghahroodi, 2023. "Statistical matching of sample survey data: application to integrate Iranian time use and labour force surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 1023-1051, September.
    5. Amodio, S. & D’Ambrosio, A. & Siciliano, R., 2016. "Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach," European Journal of Operational Research, Elsevier, vol. 249(2), pages 667-676.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:12:y:2020:i:9:p:155-:d:414888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.