IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v149y2020ics0167947320300669.html
   My bibliography  Save this article

Feature screening under missing indicator imputation with non-ignorable missing response

Author

Listed:
  • Zhang, Jing
  • Wang, Qihua
  • Kang, Jian

Abstract

This article develops a model-free variable screening technique with the non-ignorable missing response in ultrahigh-dimensional data analysis. Based on the common logistic model assumption of the propensity function, a novel screening procedure is proposed by borrowing hidden information of missingness indicator such that any variable screening method for ultrahigh-dimensional covariates with full data can be applied to the non-ignorable missing response case. And it is shown that the sure screening property can be kept as long as the corresponding screening method for full data is of sure screening property. The finite sample performances of the proposed method are demonstrated via some simulations and analysis of functional neuroimaging data.

Suggested Citation

  • Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:csdana:v:149:y:2020:i:c:s0167947320300669
    DOI: 10.1016/j.csda.2020.106975
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320300669
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.106975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qihua Wang & Yongjin Li, 2018. "How to Make Model†free Feature Screening Approaches for Full Data Applicable to the Case of Missing Response?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(2), pages 324-346, June.
    2. Jun Shao & Lei Wang, 2016. "Semiparametric inverse propensity weighting for nonignorable missing data," Biometrika, Biometrika Trust, vol. 103(1), pages 175-187.
    3. Fan, Jianqing & Feng, Yang & Song, Rui, 2011. "Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 544-557.
    4. Hengjian Cui & Runze Li & Wei Zhong, 2015. "Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 630-641, June.
    5. Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
    6. Qin J. & Leung D. & Shao J., 2002. "Estimation With Survey Data Under Nonignorable Nonresponse or Informative Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 193-200, March.
    7. Yan, Xiaodong & Tang, Niansheng & Xie, Jinhan & Ding, Xianwen & Wang, Zhiqiang, 2018. "Fused mean–variance filter for feature screening," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 18-32.
    8. Kim, Jae Kwang & Yu, Cindy Long, 2011. "A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 157-165.
    9. repec:mpr:mprres:8160 is not listed on IDEAS
    10. Lai, Peng & Liu, Yiming & Liu, Zhi & Wan, Yi, 2017. "Model free feature screening for ultrahigh dimensional data with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 201-216.
    11. Jian Kang & Hyokyoung G Hong & Yi Li, 2017. "Partition-based ultrahigh-dimensional variable screening," Biometrika, Biometrika Trust, vol. 104(4), pages 785-800.
    12. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    13. J. G. Ibrahim & S. R. Lipsitz & M.‐H. Chen, 1999. "Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 173-190.
    14. Gong Tang, 2003. "Analysis of multivariate missing data with nonignorable nonresponse," Biometrika, Biometrika Trust, vol. 90(4), pages 747-764, December.
    15. Peter Hall & D. M. Titterington & Jing‐Hao Xue, 2009. "Tilting methods for assessing the influence of components in a classifier," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 783-803, September.
    16. Jiwei Zhao & Jun Shao, 2015. "Semiparametric Pseudo-Likelihoods in Generalized Linear Models With Nonignorable Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1577-1590, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Niansheng & Xia, Linli & Yan, Xiaodong, 2019. "Feature screening in ultrahigh-dimensional partially linear models with missing responses at random," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 208-227.
    2. Xianwen Ding & Jiandong Chen & Xueping Chen, 2020. "Regularized quantile regression for ultrahigh-dimensional data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 545-568, July.
    3. Ping Wang & Lu Lin, 2023. "Conditional characteristic feature screening for massive imbalanced data," Statistical Papers, Springer, vol. 64(3), pages 807-834, June.
    4. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    5. Puying Zhao & Hui Zhao & Niansheng Tang & Zhaohai Li, 2017. "Weighted composite quantile regression analysis for nonignorable missing data using nonresponse instrument," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 189-212, April.
    6. Xin-Bing Kong & Zhi Liu & Yuan Yao & Wang Zhou, 2017. "Sure screening by ranking the canonical correlations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 46-70, March.
    7. Li, Mengyan & Ma, Yanyuan & Zhao, Jiwei, 2022. "Efficient estimation in a partially specified nonignorable propensity score model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    8. Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    9. Shonosuke Sugasawa & Kosuke Morikawa & Keisuke Takahata, 2022. "Bayesian semiparametric modeling of response mechanism for nonignorable missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 101-117, March.
    10. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
    11. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
    12. Liming Wang & Xingxiang Li & Xiaoqing Wang & Peng Lai, 2022. "Unified mean-variance feature screening for ultrahigh-dimensional regression," Computational Statistics, Springer, vol. 37(4), pages 1887-1918, September.
    13. Jiwei Zhao & Jun Shao, 2015. "Semiparametric Pseudo-Likelihoods in Generalized Linear Models With Nonignorable Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1577-1590, December.
    14. Sheng, Ying & Wang, Qihua, 2020. "Model-free feature screening for ultrahigh dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    15. Baiguo An & Guozhong Feng & Jianhua Guo, 2022. "Interaction Identification and Clique Screening for Classification with Ultra-high Dimensional Discrete Features," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 122-146, March.
    16. Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2020. "Model-free variable selection for conditional mean in regression," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    17. Bindele, Huybrechts F. & Nguelifack, Brice M., 2019. "Generalized signed-rank estimation for regression models with non-ignorable missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 14-33.
    18. Pengfei Li & Jing Qin & Yukun Liu, 2023. "Instability of inverse probability weighting methods and a remedy for nonignorable missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3215-3226, December.
    19. Lu, Jun & Lin, Lu & Wang, WenWu, 2021. "Partition-based feature screening for categorical data via RKHS embeddings," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    20. Xi Wu & Shifeng Xiong & Weiyan Mu, 2023. "An Ensemble Method for Feature Screening," Mathematics, MDPI, vol. 11(2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:149:y:2020:i:c:s0167947320300669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.