IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v22y2017i4d10.1007_s13253-017-0284-7.html
   My bibliography  Save this article

Modelling the Covariance Structure in Marginal Multivariate Count Models: Hunting in Bioko Island

Author

Listed:
  • W. H. Bonat

    (University of Southern Denmark
    Paraná Federal University)

  • J. Olivero

    (Universidad de Málaga)

  • M. Grande-Vega

    (Technical University of Madrid, Ciudad Universitaria
    Asociación Ecotono)

  • M. A. Farfán

    (Universidad de Málaga
    BioGea Consultores)

  • J. E. Fa

    (Manchester Metropolitan University
    Center for International Forestry Research (CIFOR), CIFOR Headquarters)

Abstract

The main goal of this article is to present a flexible statistical modelling framework to deal with multivariate count data along with longitudinal and repeated measures structures. The covariance structure for each response variable is defined in terms of a covariance link function combined with a matrix linear predictor involving known matrices. In order to specify the joint covariance matrix for the multivariate response vector, the generalized Kronecker product is employed. We take into account the count nature of the data by means of the power dispersion function associated with the Poisson–Tweedie distribution. Furthermore, the score information criterion is extended for selecting the components of the matrix linear predictor. We analyse a data set consisting of prey animals (the main hunted species, the blue duiker Philantomba monticola and other taxa) shot or snared for bushmeat by 52 commercial hunters over a 33-month period in Pico Basilé, Bioko Island, Equatorial Guinea. By taking into account the severely unbalanced repeated measures and longitudinal structures induced by the hunters and a set of potential covariates (which in turn affect the mean and covariance structures), our method can be used to indicate whether there was statistical evidence of a decline in blue duikers and other species hunted during the study period. Determining whether observed drops in the number of animals hunted are indeed true is crucial to assess whether species depletion effects are taking place in exploited areas anywhere in the world. We suggest that our method can be used to more accurately understand the trajectories of animals hunted for commercial or subsistence purposes and establish clear policies to ensure sustainable hunting practices. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • W. H. Bonat & J. Olivero & M. Grande-Vega & M. A. Farfán & J. E. Fa, 2017. "Modelling the Covariance Structure in Marginal Multivariate Count Models: Hunting in Bioko Island," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 446-464, December.
  • Handle: RePEc:spr:jagbes:v:22:y:2017:i:4:d:10.1007_s13253-017-0284-7
    DOI: 10.1007/s13253-017-0284-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-017-0284-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-017-0284-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bent Jørgensen & Célestin Kokonendji, 2016. "Discrete dispersion models and their Tweedie asymptotics," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(1), pages 43-78, January.
    2. Miguel A. Martinez-Beneito, 2013. "A general modelling framework for multivariate disease mapping," Biometrika, Biometrika Trust, vol. 100(3), pages 539-553.
    3. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    4. Francesco Lagona & Antonello Maruotti & Fabio Padovano, 2015. "Multilevel multivariate modelling of legislative count data, with a hidden Markov chain," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 705-723, June.
    5. Nadja Klein & Thomas Kneib & Stephan Klasen & Stefan Lang, 2015. "Bayesian structured additive distributional regression for multivariate responses," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(4), pages 569-591, August.
    6. Johann Cuenin & Bent Jørgensen & Célestin C. Kokonendji, 2016. "Simulations of full multivariate Tweedie with flexible dependence structure," Computational Statistics, Springer, vol. 31(4), pages 1477-1492, December.
    7. Jakub Stoklosa & Heloise Gibb & David I. Warton, 2014. "Fast forward selection for generalized estimating equations with a large number of predictor variables," Biometrics, The International Biometric Society, vol. 70(1), pages 110-120, March.
    8. Mariana Rodrigues-Motta & Hildete P. Pinheiro & Eduardo G. Martins & M�rcio S. Araújo & S�rgio F. dos Reis, 2013. "Multivariate models for correlated count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1586-1596, July.
    9. Wagner Hugo Bonat & Bent Jørgensen, 2016. "Multivariate covariance generalized linear models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 649-675, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kokonendji, Célestin C. & Puig, Pedro, 2018. "Fisher dispersion index for multivariate count distributions: A review and a new proposal," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 180-193.
    2. Ricardo Rasmussen Petterle & Wagner Hugo Bonat & Cassius Tadeu Scarpin, 2019. "Quasi-beta Longitudinal Regression Model Applied to Water Quality Index Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 346-368, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Victoria Ibañez & Marina Martínez-Garcia & Amelia Simó, 2021. "A Review of Spatiotemporal Models for Count Data in R Packages. A Case Study of COVID-19 Data," Mathematics, MDPI, vol. 9(13), pages 1-23, July.
    2. Marcelo Bourguignon & Célestin C. Kokonendji, 2024. "Coherent indexes for shifted count and semicontinuous models," Statistical Papers, Springer, vol. 65(8), pages 5253-5271, October.
    3. Wagner Hugo Bonat & Bent Jørgensen, 2016. "Multivariate covariance generalized linear models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 649-675, November.
    4. Kokonendji, Célestin C. & Puig, Pedro, 2018. "Fisher dispersion index for multivariate count distributions: A review and a new proposal," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 180-193.
    5. Sobom M. Somé & Célestin C. Kokonendji & Nawel Belaid & Smail Adjabi & Rahma Abid, 2023. "Bayesian local bandwidths in a flexible semiparametric kernel estimation for multivariate count data with diagnostics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 843-865, September.
    6. Célestin C. Kokonendji & Aboubacar Y. Touré & Amadou Sawadogo, 2020. "Relative variation indexes for multivariate continuous distributions on $$[0,\infty )^k$$[0,∞)k and extensions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 285-307, June.
    7. Soltani, Ali & Roohani Qadikolaei, Mohsen, 2024. "Space-time analysis of accident frequency and the role of built environment in mitigation," Transport Policy, Elsevier, vol. 150(C), pages 189-205.
    8. Noel Perceval Assogba & Daowei Zhang, 2020. "An Economic Analysis of Tropical Forest Resource Conservation in a Protected Area," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
    9. Catalina Bolancé & Raluca Vernic, 2017. "“Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution”," IREA Working Papers 201718, University of Barcelona, Research Institute of Applied Economics, revised Oct 2017.
    10. Gning, Lucien & Diagne, M.L. & Tchuenche, J.M., 2023. "Hierarchical generalized linear models, correlation and a posteriori ratemaking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    11. Alexander Silbersdorff & Kai Sebastian Schneider, 2019. "Distributional Regression Techniques in Socioeconomic Research on the Inequality of Health with an Application on the Relationship between Mental Health and Income," IJERPH, MDPI, vol. 16(20), pages 1-28, October.
    12. Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.
    13. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    14. François Facchini & Elena Seghezza, 2021. "Legislative production and public spending in France," Public Choice, Springer, vol. 189(1), pages 71-91, October.
    15. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    16. Christian Biener & Martin Eling & Shailee Pradhan, 2015. "Recent Research Developments Affecting Nonlife Insurance—The CAS Risk Premium Project 2013 Update," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 18(1), pages 129-141, March.
    17. Lagona, Francesco & Padovano, Fabio, 2021. "How does legislative behavior change when the country becomes democratic? The case of South Korea," European Journal of Political Economy, Elsevier, vol. 69(C).
    18. Antonello Maruotti & Pierfrancesco Alaimo Di Loro, 2023. "CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    19. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    20. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:22:y:2017:i:4:d:10.1007_s13253-017-0284-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.