Estimation of small area proportions under a bivariate logistic mixed model
Author
Abstract
Suggested Citation
DOI: 10.1007/s11135-022-01530-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lorenzo Cappellari & Stephen P. Jenkins, 2006.
"Calculation of multivariate normal probabilities by simulation, with applications to maximum simulated likelihood estimation,"
Stata Journal, StataCorp LP, vol. 6(2), pages 156-189, June.
- Cappellari, Lorenzo & Jenkins, Stephen P., 2006. "Calculation of Multivariate Normal Probabilities by Simulation, with Applications to Maximum Simulated Likelihood Estimation," IZA Discussion Papers 2112, Institute of Labor Economics (IZA).
- P. Jenkins, Stephen & Cappellari, Lorenzo, 2006. "Calculation of multivariate normal probabilities by simulation, with applications to maximum simulated likelihood estimation," ISER Working Paper Series 2006-16, Institute for Social and Economic Research.
- Lorenzo Cappellari & Stephen P. Jenkins, 2006. "Calculation of Multivariate Normal Probabilities by Simulation, with Applications to Maximum Simulated Likelihood Estimation," Discussion Papers of DIW Berlin 584, DIW Berlin, German Institute for Economic Research.
- Gonzalez-Manteiga, W. & Lombardia, M.J. & Molina, I. & Morales, D. & Santamaria, L., 2007. "Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2720-2733, February.
- Azka Ubaidillah & Khairil Anwar Notodiputro & Anang Kurnia & I. Wayan Mangku, 2019. "Multivariate Fay-Herriot models for small area estimation with application to household consumption per capita expenditure in Indonesia," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(15), pages 2845-2861, November.
- Isabel Molina & Ayoub Saei & M. José Lombardía, 2007. "Small area estimates of labour force participation under a multinomial logit mixed model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 975-1000, October.
- J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
- Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
- Benavent, Roberto & Morales, Domingo, 2016. "Multivariate Fay–Herriot models for small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 372-390.
- Gueorguieva, Ralitza & Rosenheck, Robert & Zelterman, Daniel, 2008. "Dirichlet component regression and its applications to psychiatric data," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5344-5355, August.
- Koen Bel & Dennis Fok & Richard Paap, 2018.
"Parameter estimation in multivariate logit models with many binary choices,"
Econometric Reviews, Taylor & Francis Journals, vol. 37(5), pages 534-550, May.
- Bel, K. & Fok, D. & Paap, R., 2014. "Parameter Estimation in Multivariate Logit models with Many Binary Choices," Econometric Institute Research Papers EI 2014-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Molina, Isabel, 2009. "Uncertainty under a multivariate nested-error regression model with logarithmic transformation," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 963-980, May.
- Saurav Guha & Hukum Chandra, 2021. "Measuring and Mapping Disaggregate Level Disparities in Food Consumption and Nutritional Status via Multivariate Small Area Modelling," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(2), pages 623-646, April.
- Ray Chambers & Nicola Salvati & Nikos Tzavidis, 2016. "Semiparametric small area estimation for binary outcomes with application to unemployment estimation for local authorities in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 453-479, February.
- Castelli, Adriana & Jacobs, Rowena & Goddard, Maria & Smith, Peter C., 2013. "Health, policy and geography: Insights from a multi-level modelling approach," Social Science & Medicine, Elsevier, vol. 92(C), pages 61-73.
- Jiming Jiang & P. Lahiri, 2001. "Empirical Best Prediction for Small Area Inference with Binary Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 217-243, June.
- Angelo Moretti & Natalie Shlomo & Joseph W. Sakshaug, 2021. "Small Area Estimation of Latent Economic Well-being," Sociological Methods & Research, , vol. 50(4), pages 1660-1693, November.
- S. Rabe-Hesketh & A. Skrondal, 2001. "Parameterization of Multivariate Random Effects Models for Categorical Data," Biometrics, The International Biometric Society, vol. 57(4), pages 1256-1263, December.
- Isabel Molina & Ewa Strzalkowska‐Kominiak, 2020. "Estimation of proportions in small areas: application to the labour force using the Swiss Census Structural Survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 281-310, January.
- Nadja Klein & Thomas Kneib & Stephan Klasen & Stefan Lang, 2015.
"Bayesian structured additive distributional regression for multivariate responses,"
Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(4), pages 569-591, August.
- Nadja Klein & Thomas Kneib & Stephan Klasen & Stefan Lang, 2013. "Bayesian Structured Additive Distributional Regression for Multivariate Responses," Working Papers 2013-35, Faculty of Economics and Statistics, Universität Innsbruck.
- Xingdong Feng & Xuming He & Jianhua Hu, 2011. "Wild bootstrap for quantile regression," Biometrika, Biometrika Trust, vol. 98(4), pages 995-999.
- Monica Pratesi & Nicola Salvati, 2008. "Small area estimation: the EBLUP estimator based on spatially correlated random area effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 113-141, February.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Jan Pablo Burgard & Jan-Philipp Kolb & Hariolf Merkle & Ralf Münnich, 2017. "Synthetic data for open and reproducible methodological research in social sciences and official statistics," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 11(3), pages 233-244, December.
- Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
- Tomáš Hobza & Domingo Morales & Laureano Santamaría, 2018. "Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 270-294, June.
- Francesco Schirripa Spagnolo & Antonella D’Agostino & Nicola Salvati, 2018. "Measuring differences in economic standard of living between immigrant communities in Italy," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1643-1667, July.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2023. "Small area estimation of average compositions under multivariate nested error regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 651-676, June.
- Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "$$\ell _2$$ ℓ 2 -penalized approximate likelihood inference in logit mixed models for regional prevalence estimation under covariate rank-deficiency," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 459-489, May.
- María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.
- Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "Robust prediction of domain compositions from uncertain data using isometric logratio transformations in a penalized multivariate Fay–Herriot model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 65-96, February.
- María Dolores Esteban & María José Lombardía & Esther López‐Vizcaíno & Domingo Morales & Agustín Pérez, 2022. "Empirical best prediction of small area bivariate parameters," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1699-1727, December.
- M. Giovanna Ranalli & Giorgio E. Montanari & Cecilia Vicarelli, 2018. "Estimation of small area counts with the benchmarking property," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 349-378, December.
- Miguel Boubeta & María José Lombardía & Domingo Morales, 2016. "Empirical best prediction under area-level Poisson mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 548-569, September.
- Baldermann, Claudia & Salvati, Nicola & Schmid, Timo, 2016. "Robust small area estimation under spatial non-stationarity," Discussion Papers 2016/5, Free University Berlin, School of Business & Economics.
- Żądło Tomasz, 2020. "On Accuracy Estimation Using Parametric Bootstrap in small Area Prediction Problems," Journal of Official Statistics, Sciendo, vol. 36(2), pages 435-458, June.
- Boubeta, Miguel & Lombardía, María José & Morales, Domingo, 2017. "Poisson mixed models for studying the poverty in small areas," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 32-47.
- Chandra, Hukum & Salvati, Nicola & Chambers, Ray, 2018. "Small area estimation under a spatially non-linear model," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 19-38.
- Merfeld,Joshua David & Newhouse,David Locke & Weber,Michael & Lahiri,Partha, 2022.
"Combining Survey and Geospatial Data Can Significantly Improve Gender-DisaggregatedEstimates of Labor Market Outcomes,"
Policy Research Working Paper Series
10077, The World Bank.
- Merfeld, Joshua D. & Newhouse, David & Weber, Michael & Lahiri, Partha, 2022. "Combining Survey and Geospatial Data Can Significantly Improve Gender-Disaggregated Estimates of Labor Market Outcomes," IZA Discussion Papers 15390, Institute of Labor Economics (IZA).
- Isabel Molina & Paul Corral & Minh Nguyen, 2022. "Estimation of poverty and inequality in small areas: review and discussion," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1143-1166, December.
- Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Isabel Molina & Ewa Strzalkowska‐Kominiak, 2020. "Estimation of proportions in small areas: application to the labour force using the Swiss Census Structural Survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 281-310, January.
- Domingo Morales & Joscha Krause & Jan Pablo Burgard, 2022. "On the Use of Aggregate Survey Data for Estimating Regional Major Depressive Disorder Prevalence," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 344-368, March.
- Noah Cheruiyot Mutai, 2022. "Small area estimation of health insurance coverage for Kenyan counties," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(3), pages 231-254, December.
- K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
- Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
More about this item
Keywords
GLMM; Logistic regression; Design-based; Nested-errors; Prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:57:y:2023:i:4:d:10.1007_s11135-022-01530-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.