IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v32y2023i3d10.1007_s10260-023-00682-5.html
   My bibliography  Save this article

Bayesian local bandwidths in a flexible semiparametric kernel estimation for multivariate count data with diagnostics

Author

Listed:
  • Sobom M. Somé

    (Université Thomas SANKARA
    Université Joseph KI-ZERBO)

  • Célestin C. Kokonendji

    (Université de Franche-Comté
    Université de Bangui)

  • Nawel Belaid

    (University of Bejaia)

  • Smail Adjabi

    (University of Bejaia)

  • Rahma Abid

    (University of Sfax, Sfax, Tunisia and University Paris-Dauphine Tunis)

Abstract

In this paper, we consider a flexible semiparametric approach for estimating multivariate probability mass functions. The corresponding estimator is governed by a parametric starter, for instance a multivariate Poisson distribution with nonnegative cross correlations which is basically estimated through an expectation–maximization algorithm, and a nonparametric part which is an unknown weight discrete function to be smoothed through multiple binomial kernels. Our central focus is upon the selection matrix of bandwidths by the local Bayesian method. We additionally discuss the diagnostic model to enact an appropriate choice between the parametric, semiparametric and nonparametric approaches. Retaining a pure nonparametric method implies losing parametric benefices in this modelling framework. Practical applications, including a tail probability estimation, on multivariate count datasets are analyzed under several scenarios of correlations and dispersions. This semiparametic approach demonstrates superior performances and better interpretations compared to parametric and nonparametric ones.

Suggested Citation

  • Sobom M. Somé & Célestin C. Kokonendji & Nawel Belaid & Smail Adjabi & Rahma Abid, 2023. "Bayesian local bandwidths in a flexible semiparametric kernel estimation for multivariate count data with diagnostics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 843-865, September.
  • Handle: RePEc:spr:stmapp:v:32:y:2023:i:3:d:10.1007_s10260-023-00682-5
    DOI: 10.1007/s10260-023-00682-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-023-00682-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-023-00682-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Karlis, 2003. "An EM algorithm for multivariate Poisson distribution and related models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(1), pages 63-77.
    2. Bent Jørgensen & Célestin Kokonendji, 2016. "Discrete dispersion models and their Tweedie asymptotics," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(1), pages 43-78, January.
    3. N. Zougab & S. Adjabi & C. Kokonendji, 2012. "Binomial kernel and Bayes local bandwidth in discrete function estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 783-795.
    4. Alan Huang & Lucas Sippel & Thomas Fung, 2022. "Consistent second-order discrete kernel smoothing using dispersed Conway–Maxwell–Poisson kernels," Computational Statistics, Springer, vol. 37(2), pages 551-563, April.
    5. Lynda Harfouche & Smail Adjabi & Nabil Zougab & Benedikt Funke, 2018. "Multiplicative bias correction for discrete kernels," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 253-276, June.
    6. Peter Berkhout & Erik Plug, 2004. "A bivariate Poisson count data model using conditional probabilities," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(3), pages 349-364, August.
    7. Karlis, Dimitris & Ntzoufras, Ioannis, 2005. "Bivariate Poisson and Diagonal Inflated Bivariate Poisson Regression Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i10).
    8. Kokonendji, Célestin C. & Puig, Pedro, 2018. "Fisher dispersion index for multivariate count distributions: A review and a new proposal," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 180-193.
    9. Johann Cuenin & Bent Jørgensen & Célestin C. Kokonendji, 2016. "Simulations of full multivariate Tweedie with flexible dependence structure," Computational Statistics, Springer, vol. 31(4), pages 1477-1492, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Célestin C. Kokonendji & Sobom M. Somé & Youssef Esstafa & Marcelo Bourguignon, 2023. "On Underdispersed Count Kernels for Smoothing Probability Mass Functions," Stats, MDPI, vol. 6(4), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kokonendji, Célestin C. & Puig, Pedro, 2018. "Fisher dispersion index for multivariate count distributions: A review and a new proposal," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 180-193.
    2. Célestin C. Kokonendji & Sobom M. Somé, 2021. "Bayesian Bandwidths in Semiparametric Modelling for Nonnegative Orthant Data with Diagnostics," Stats, MDPI, vol. 4(1), pages 1-22, March.
    3. Bermúdez, Lluís & Karlis, Dimitris, 2011. "Bayesian multivariate Poisson models for insurance ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 226-236, March.
    4. Célestin C. Kokonendji & Aboubacar Y. Touré & Amadou Sawadogo, 2020. "Relative variation indexes for multivariate continuous distributions on $$[0,\infty )^k$$[0,∞)k and extensions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 285-307, June.
    5. F. Novoa-Muñoz & M. Jiménez-Gamero, 2014. "Testing for the bivariate Poisson distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 771-793, August.
    6. Su Pei-Fang & Mau Yu-Lin & Guo Yan & Li Chung-I & Liu Qi & Boice John D. & Shyr Yu, 2017. "Bivariate Poisson models with varying offsets: an application to the paired mitochondrial DNA dataset," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(1), pages 47-58, March.
    7. Rolf Larsson, 2020. "Discrete factor analysis using a dependent Poisson model," Computational Statistics, Springer, vol. 35(3), pages 1133-1152, September.
    8. Lillestøl, Jostein, 2020. "Sampling risk evaluations in a tax fraud case: Some modelling issues," Discussion Papers 2020/5, Norwegian School of Economics, Department of Business and Management Science.
    9. W. H. Bonat & J. Olivero & M. Grande-Vega & M. A. Farfán & J. E. Fa, 2017. "Modelling the Covariance Structure in Marginal Multivariate Count Models: Hunting in Bioko Island," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 446-464, December.
    10. Doho, Libaud Rudy Aurelien & Somé, Sobom Matthieu & Banto, Jean Michel, 2023. "Inflation and west African sectoral stock price indices: An asymmetric kernel method analysis," Emerging Markets Review, Elsevier, vol. 54(C).
    11. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    12. Luke S. Benz & Michael J. Lopez, 2023. "Estimating the change in soccer’s home advantage during the Covid-19 pandemic using bivariate Poisson regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 205-232, March.
    13. Kalema, George & Molenberghs, Geert, 2016. "Generating Correlated and/or Overdispersed Count Data: A SAS Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(c01).
    14. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    15. Guo-Liang Tian & Xiqian Ding & Yin Liu & Man-Lai Tang, 2019. "Some new statistical methods for a class of zero-truncated discrete distributions with applications," Computational Statistics, Springer, vol. 34(3), pages 1393-1426, September.
    16. Jacek Osiewalski & Jerzy Marzec, 2019. "Joint modelling of two count variables when one of them can be degenerate," Computational Statistics, Springer, vol. 34(1), pages 153-171, March.
    17. Lundevaller, Erling Häggström, 2009. "The effect of travel cost on frequencies of shopping and recreational trips in Sweden," Journal of Transport Geography, Elsevier, vol. 17(3), pages 208-215.
    18. Y. Ziane & S. Adjabi & N. Zougab, 2015. "Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1645-1658, August.
    19. Tahir Ekin & Stephen Walker & Paul Damien, 2023. "Augmented simulation methods for discrete stochastic optimization with recourse," Annals of Operations Research, Springer, vol. 320(2), pages 771-793, January.
    20. Yasmina Ziane & Nabil Zougab & Smail Adjabi, 2018. "Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data," Computational Statistics, Springer, vol. 33(1), pages 299-318, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:32:y:2023:i:3:d:10.1007_s10260-023-00682-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.