IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v34y2023i5ne2793.html
   My bibliography  Save this article

CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model

Author

Listed:
  • Antonello Maruotti
  • Pierfrancesco Alaimo Di Loro

Abstract

We introduce a bivariate bidimensional mixed‐effects regression model, motivated by the analysis of CO2$$ {\mathrm{CO}}_2 $$ emission levels and growth on OECD countries from 1990 to 2018. The model is able to capture heterogeneity across countries and allows for a full association structure among outcomes, assuming a discrete distribution for the random terms with a possibly different number of support points in each univariate profile. We test the behavior of the proposed approach via a simulation study, considering several factors such as the number of observed units, times, and levels of heterogeneity in the data. Empirically, we define an extended version of the STIRPAT model where all model parameters, and not only the mean, vary according to a regression model. Our empirical findings provide evidence of heterogeneous behaviors across countries and suggest the need of a flexible approach to properly reflect the heterogeneity in both the emission levels and the growth processes.

Suggested Citation

  • Antonello Maruotti & Pierfrancesco Alaimo Di Loro, 2023. "CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
  • Handle: RePEc:wly:envmet:v:34:y:2023:i:5:n:e2793
    DOI: 10.1002/env.2793
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2793
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Murray Aitkin, 1999. "A General Maximum Likelihood Analysis of Variance Components in Generalized Linear Models," Biometrics, The International Biometric Society, vol. 55(1), pages 117-128, March.
    2. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.
    3. Poudel, Biswo N. & Paudel, Krishna P. & Bhattarai, Keshav, 2009. "Searching for an Environmental Kuznets Curve in Carbon Dioxide Pollutant in Latin American Countries," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 41(1), pages 1-15, April.
    4. Bartolucci, Francesco & Bacci, Silvia & Pigini, Claudia, 2017. "Misspecification test for random effects in generalized linear finite-mixture models for clustered binary and ordered data," Econometrics and Statistics, Elsevier, vol. 3(C), pages 112-131.
    5. Gazi A. Uddin & Khorshed Alam & Jeff Gow, 2016. "Does Ecological Footprint Impede Economic Growth? An Empirical Analysis Based on the Environmental Kuznets Curve Hypothesis," Australian Economic Papers, Wiley Blackwell, vol. 55(3), pages 301-316, September.
    6. Xue, Chaokai & Shahbaz, Muhammad & Ahmed, Zahoor & Ahmad, Mahmood & Sinha, Avik, 2022. "Clean energy consumption, economic growth, and environmental sustainability: What is the role of economic policy uncertainty?," Renewable Energy, Elsevier, vol. 184(C), pages 899-907.
    7. Murat K. Munkin & Pravin K. Trivedi, 1999. "Simulated maximum likelihood estimation of multivariate mixed-Poisson regression models, with application," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 29-48.
    8. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    9. Francesco Lagona & Antonello Maruotti & Fabio Padovano, 2015. "Multilevel multivariate modelling of legislative count data, with a hidden Markov chain," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 705-723, June.
    10. Paolo Maranzano & João Paulo Cerdeira Bento & Matteo Manera, 2022. "The Role of Education and Income Inequality on Environmental Quality: A Panel Data Analysis of the EKC Hypothesis on OECD Countries," Sustainability, MDPI, vol. 14(3), pages 1-24, January.
    11. Francis K. C. Hui & Samuel Müller & Alan H. Welsh, 2021. "Random Effects Misspecification Can Have Severe Consequences for Random Effects Inference in Linear Mixed Models," International Statistical Review, International Statistical Institute, vol. 89(1), pages 186-206, April.
    12. Battisti, Michele & Parmeter, Christopher F., 2013. "Clustering and polarization in the distribution of output: A multivariate perspective," Journal of Macroeconomics, Elsevier, vol. 35(C), pages 144-162.
    13. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-435, October.
    14. Balsalobre-Lorente, Daniel & Ibáñez-Luzón, Lucia & Usman, Muhammad & Shahbaz, Muhammad, 2022. "The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries," Renewable Energy, Elsevier, vol. 185(C), pages 1441-1455.
    15. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    16. Michael L. Stein, 2021. "A parametric model for distributions with flexible behaviour in both tails," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    17. Wu, Rong & Wang, Jieyu & Wang, Shaojian & Feng, Kuishuang, 2021. "The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: A historical and prospective analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Rainer Winkelmann, 2000. "Seemingly Unrelated Negative Binomial Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 62(4), pages 553-560, September.
    19. Xianzheng Huang, 2009. "Diagnosis of Random-Effect Model Misspecification in Generalized Linear Mixed Models for Binary Response," Biometrics, The International Biometric Society, vol. 65(2), pages 361-368, June.
    20. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    21. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2006. "A Constructive Representation of Univariate Skewed Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 823-829, June.
    22. Lupi, Veronica & Marsiglio, Simone, 2021. "Population growth and climate change: A dynamic integrated climate-economy-demography model," Ecological Economics, Elsevier, vol. 184(C).
    23. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    24. Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
    25. Maria Grazia Pittau & Roberto Zelli & Paul A. Johnson, 2010. "Mixture Models, Convergence Clubs, And Polarization," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 56(1), pages 102-122, March.
    26. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    27. Michael L. Stein, 2021. "A parametric model for distributions with flexible behavior in both tails," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    28. Balaguer, Jacint & Cantavella, Manuel, 2018. "The role of education in the Environmental Kuznets Curve. Evidence from Australian data," Energy Economics, Elsevier, vol. 70(C), pages 289-296.
    29. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    30. Ingrassia, Salvatore & Rocci, Roberto, 2011. "Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1715-1725, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Alfò & Giovanni Trovato, 2004. "Semiparametric Mixture Models for Multivariate Count Data, with Application," CEIS Research Paper 51, Tor Vergata University, CEIS.
    2. Kusiyah Kusiyah & Mansoor Mushtaq & Shabbir Ahmed & Ansar Abbas & Mochammad Fahlevi, 2024. "Impact of Urbanization on Environmental Eminence: Moderating Role of Renewable Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 244-257, March.
    3. Zhang, Pan & Wang, Huan, 2022. "Do provincial energy policies and energy intensity targets help reduce CO2 emissions? Evidence from China," Energy, Elsevier, vol. 245(C).
    4. Diani, Cecilia & Galimberti, Giuliano & Soffritti, Gabriele, 2022. "Multivariate cluster-weighted models based on seemingly unrelated linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    5. Charfeddine, Lanouar & Ben Khediri, Karim, 2016. "Financial development and environmental quality in UAE: Cointegration with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1322-1335.
    6. Niu, Honglei & Lekse, William, 2017. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics Discussion Papers 2017-62, Kiel Institute for the World Economy (IfW Kiel).
    7. Alfò, Marco & Rocchetti, Irene, 2013. "A flexible approach to finite mixture regression models for multivariate mixed responses," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1754-1758.
    8. Mohamed Abdouli & Olfa Kamoun & Besma Hamdi, 2018. "The impact of economic growth, population density, and FDI inflows on $$\hbox {CO}_{2}$$ CO 2 emissions in BRICTS countries: Does the Kuznets curve exist?," Empirical Economics, Springer, vol. 54(4), pages 1717-1742, June.
    9. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.
    10. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    11. Jin, Taeyoung, 2022. "The evolutionary renewable energy and mitigation impact in OECD countries," Renewable Energy, Elsevier, vol. 189(C), pages 570-586.
    12. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    13. Hanen Ragoubi & Zouheir Mighri, 2021. "Spillover effects of trade openness on CO2 emissions in middle‐income countries: A spatial panel data approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 835-877, June.
    14. Lapatinas, Athanasios & Garas, Antonios & Boleti, Eirini & Kyriakou, Alexandra, 2019. "Economic complexity and environmental performance: Evidence from a world sample," MPRA Paper 92833, University Library of Munich, Germany.
    15. Wang, Shaojian & Xie, Zihan & Wu, Rong & Feng, Kuishang, 2022. "How does urbanization affect the carbon intensity of human well-being? A global assessment," Applied Energy, Elsevier, vol. 312(C).
    16. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    17. Aristophane Djeufack Dongmo & Paloma Mbengono Coralie & Manuela Chetue Komguep & Ulrich Kembeng Tchinda, 2023. "Urbanization, informal economy, economic growth and CO2 emissions in African countries: a panel vector autoregression (PVAR) model approach," Journal of Bioeconomics, Springer, vol. 25(1), pages 35-63, April.
    18. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    19. Rasool, Samma Faiz & Zaman, Shah & Jehan, Noor & Chin, Tachia & Khan, Saleem & Zaman, Qamar uz, 2022. "Investigating the role of the tech industry, renewable energy, and urbanization in sustainable environment: Policy directions in the context of developing economies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    20. Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:34:y:2023:i:5:n:e2793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.